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Abstract. Breit–Pauli results for energy levels, lifetimes, and some transition data are reported
for all levels of the 2s2, 2s2p, 2p2, 2s3s, 2s3p, and 2s3d configurations of the Be-like spectrum
for 4 6 Z 6 12. A simultaneous optimization scheme was applied so that a radial basis could
be determined for a set of terms that mix in the Breit–Pauli approximation. Convergence of the
LS line strength is used as a factor in estimating accuracy as well as the agreement of energy levels
and their splitting between theory and experiment. The results are evaluated by comparison with
other theoretical results and experiment for transition rates.

1. Introduction

Atomic spectroscopic data are essential to many astrophysical studies. Seaton [1], in describing
atomic data needed for the calculation of radiative accelerations and diffusion in Mn and HgMn
stars, mentioned a need for some 5× 106 f -values. The Opacity Project [2] was undertaken
to produce these huge amounts of data in theLS approximation using close-coupling theory
and theR-matrix method. But even in light atoms, the mixing of terms can be important as in
the 2p3p3P o

J –2p3d3P o
J transitions which are the primary decays of the Bowen fluorescence

mechanism in OIII [3]. At the same time, intercombination transitions are of great interest
in the study of astrophysical plasmas where they may play an important diagnostic role. The
transition rates of such transitions originate entirely from the mixing of terms through spin–
orbit and other relativistic effects.

In the last decade, tremendous progress has been realized in variational methods forab
initio calculation of atomic properties [4], including also transition rates [5]. Relativistic
effects can be included either in a full multiconfiguration Dirac–Fock (MCDF) calculation or
through a non-relativistic multiconfiguration Hartree–Fock (MCHF) calculation followed by
a configuration interaction calculation using the Breit–Pauli (BP) Hamiltonian. In the former,
relativistic effects are incorporated fully into the theory but, because of the resulting complexity,
the inclusion of correlation is often limited, particularly in complex systems. The opposite is
true of the MCHF + BP approach: more correlation can be included but the relativistic effects
are treated only to lowest order. These two approaches have been compared extensively for
the 2s2 1S0–2s2p3Po

1 transition in CIII [6, 7] and with the most accurate experimentalA-
value [8]. Though both theories are in excellent agreement with experiment, MCHF + BP
was computationally much simpler and observed data could be used to improve the mixing of
terms.

Recently, BP energies and transition rates were reported for the 2s, 2p, 3s, 3p, 3d, and
3s2L terms of the Li-like sequence, 36 Z 6 8 [9]. For neutral Li, the uncertainty in the
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transition rates was less than the error of the most accurate experiment. No term mixing was
included. In this paper we extend the BP ‘spectrum’ calculations, where all transitions between
levels of a portion of the energy spectrum are computed, to the Be-like states. In anticipation
of more complex cases, like in the F-like sequence where the mixing may include as many
as six terms, a method of simultaneous optimization was developed and is evaluated here for
these simpler, four-electron systems.

2. Computational procedures

The non-relativistic MCHF approach is used for calculating the wavefunction9 of the state
labelledγLS

9(γLS) =
∑
j

cj8(γjLS), (1)

whereγ represents the dominant configuration, and any additional quantum numbers required
for uniquely specifying the state are considered. The MCHF wavefunction9 is expanded in
terms of configuration state functions (CSFs){8} having the sameLS symmetry but arising
from different electronic configurations (γj ). The CSFs are built from a basis of one-electron
spin-orbital functions

φnlmlms = 1
r
Pnl(r)Ylml (θ, ϕ)χms . (2)

The MCHF procedure [10] consists of optimizing to self-consistencyboth the sets of radial
functions{Pnj lj (r)} and mixing coefficients{cj }. Thus the CSFs included in the expansion
determine the radial functions.

In large-scale methods, systematic calculations are performed of increasing size that allow
the monitoring of properties under investigation. In such systematic methods, active sets (ASs)
of orbitals are used to determine the expansion. These are characterized by the largest principal
quantum number. Thus then = 3 AS consists of all the orbitals{1s, 2s, 2p, 3s, 3p, 3d}, though
it should be remembered that for correlation orbitals (orbitals not occupied in the Hartree–Fock
approximation), the principal quantum number is not important spectroscopically, but serves
as a simple index for the orbital of a given symmetry.

Given an active orbital set, rules are used to generate the CSF expansion. In neutral Be,
term mixing is negligible but, at the same time, correlation in the core (which modifies the
potential for the outer electrons) is more important. For this reason, the rules for generating
expansions for states in Be were different from those of the ions.

The rules for obtaining expansions are often expressed in terms of a number of
excitations—singles (S), doubles (D), etc. However, in order to allow for the near-degeneracy
of the 2s and 2p orbitals at higherZ, it is convenient to express the rule in terms of the set of
possible principal quantum numbers. To curb the rate of growth of the expansions with the
orbital set size, it may be convenient to define the CSFs set as the union of sets. In this paper,
the sets used were the following:

atom: {1, 2}{1, 2, 3}{2, 3, . . . , n 6 5}2 ∪ 1s{1, 2, 3}{2, 3, . . . , n 6 8}2 ∪ 1s2{2, 3, . . . , n}2
ion: 1s{1, 2, 3}{2, 3, . . . , n 6 9}2 ∪ 1s2{2, 3, 4, . . . , n}2.
In other words, in the first set for the atom, the first electron has a principal quantum number of
n = 1 orn = 2; the second has a principal quantum number in the rangen = 1, 2, 3, and the last
two electrons are unrestricted, but withn 6 5. Notice that this rule allows double excitations
from 1s2 and hence includes core correlation. The CSFs with one 1s orbital represent core
polarization, and those with 1s2 are part of valence correlation. For the ions, core correlation
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was neglected so that the computational size could be constrained. In all cases forn > 4, the
1s orbital was fixed being obtained from an expansion over the set 1s2{2, 3}2 and all orbitals
were varied. Also, all expansions were restricted tol 6 6 or i-orbitals.

Once a set of radial orbitals has been obtained, the relativistic corrections can be taken
into account within the BP approximation by diagonalizing the BP Hamiltonian [10] to get the
intermediate coupling wavefunctions

9(γ J ) =
∑
LS

∑
j

cj (LS)8(γjLSJ ). (3)

Thus the expansion is now the sum of expansions over a set of terms. For all expansions, the
iterative Davidson method [11] was used to determine a few of the lowest eigenvalues and
eigenvectors [12].

All the results in this paper, unless specifically stated as beingLS results, are based on
the diagonalization of the BP Hamiltonian in which the orbit–orbit term has been omitted.
This operator does not contribute to the mixing of terms, and behaves like a small correlation
correction. Experiments in Li-like spectra [9] have shown that inclusion of orbit–orbit can
double the computation times for generating the BP interaction matrix, yet have negligible
effect at the present level of accuracy. For this reason, it has been omitted, as is common
practice. In the rest of the paper, we will refer to our results as MCHF results, and only use
MCHF + BP for emphasis, when needed.

The weighted oscillator strengthsgf are calculated using the length and velocity
formalisms

gifl(ik) = 2
31Eik|〈9i‖

∑
j

r j‖9k〉|2 (4)

gifv(ik) = 2

3

1

1Eij
|〈9i‖

∑
j

∇j‖9k〉|2 (5)

to monitor the expected convergence between the two forms with the improvement of the
wavefunction9i of the lower state and9k of the upper state, and of the corresponding transition
energy1Eik. In these equations,gi is the degeneracy factor, i.e.gi = (2Li + 1)(2Si + 1) for
LS-coupled wavefunctions andgi = (2Ji+1) for BP wavefunctions. In the BP approximation,
the above length form is correct to O(α2) (except for the omission of orbit–orbit) while the
velocity form requires a relativistic correction to the gradient operator [13]. For this reason,
it is customary to report both length and velocity results for anLS calculation, but only the
length form in the BP calculation.

No orthonormality constraints are imposedbetweenthe two sets of radial functions
spanning the two total wavefunctions9i and9k, allowing aseparateMCHF optimization
of the two states involved. The details of the bi-orthonormal transformation algorithm used
for dealing with the resulting non-orthogonality problems can be found elsewhere [14].

3. Optimization strategies

The usual MCHF variational optimization method for a given term, produces term-dependent
orbitals. The BP code, however, requires that the orbitals for each term be the same. When
only two terms are mixed, the (n, n + 1) scheme [10] works well where orbitals are optimized
systematically for a primary term and then an extra ‘layer’ of orbitals is optimized on the
secondary term. When many terms are present, this scheme becomes unmanageable if extended
to an (n, n+ 1, . . . , n+m− 1) procedure for the mixing ofm terms. Simplifying assumptions
could be made using a cross-optimization scheme [15], but these tend to be somewhat arbitrary.
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Table 1. Optimization strategies for groups of terms and theirJ values.

States Terms

2s2 1S0 2s2 1S, 2p2 3P
2p2 3P0,1,2, 1D2, 1S0 2p2 3P,1D, 1S
2s3s1S0, 3S1 2s3s1S,3S and 2p2 3P
2s3d1D2, 3D1,2,3 2s3d1D, 3D and 2p2 1D, 3P
2s2p1Po

1, 3Po
0,1,2 2s2p1Po, 3Po

2s3p1Po
1, 3Po

0,1,2 2s3p1Po, 3Po

The MCHF optimization is based on an energy functional for a givenLS term. In this
work, we have extended the code to simultaneous optimization of a weighted average of energy
functionals of one or more terms, where the weights can be user defined. At the same time,
it is also possible to optimize on one or more eigenvalues of a given term, again with user
defined weights, though the weights for all the eigenvalues of a specific term were assumed
to be the same. SupposeE(Ti) represents an energy functional for termT and eigenvaluei,
assuming orbitals and also wavefunctions are normalized. Then optimization was performed
on the functional

E =
∑
Ti

wTiE(Ti)/
∑
Ti

wTi

wherewTi is the weight forTi .
The different states of the Be-like ions were grouped together and a radial basis determined

for a set of terms and/or eigenvalues that were deemed to be important for the relativistic effects,
as shown in table 1. All had equal weights. Thus 2d 3d1D2,

3D1,2,3 states were computed from
a mixing of three terms:1D, 3D and3P, but two lowest eigenvalues from the1D expansion
were included in the expression of the energy functional for optimization of orbitals, along
with the lowest from3D, and the lowest from3P. A question arises as to how the 1s orbitals
are to be determined. Since the mixing of 2p2 3P0 with 2s2 1S0 is rather small, even for our
highestZ, it was found that a better spectrum was obtained if the 1s orbital was obtained
from ann = 3 expansion over1S only. In all other cases, the 1s orbital was determined from
simultaneous optimization at then = 3 level of all the terms as indicated in table 1. After that,
for expansions withn 6 5, all orbitals except 1s were varied; forn = 6, all but 1s, 2s, 2p were
varied and, in the case of 2s3p and 2s3d, all but 1s, 2s, 2p, 3s, 3p, 3d. Forn = 7 andn = 8,
the last 20 orbitals were varied except for then = 7 calculations for 2s3p and 2s3d where the
number was 18. Forn = 9, 10, only the new orbitals were varied, all others being kept fixed.

The neutral atom was treated somewhat differently. As already mentioned, core correlation
is more important here and was included in the model. At the same time, the only term mixing
included in the calculations was the singlet-triplet mixing of 2s2p and 2s3p.

4. Evaluation of the simultaneous optimization process

In a non-relativistic, independent optimization process, convergence of the transition energy
and the agreement of the length and velocity forms of the line strength can be used as indicators
of accuracy. The transition energies themselves may differ from observed transition energies
because of omitted correlation and relativistic effects. In table 2, the non-relativistic transition
energies and line strengths (length and velocity form) for simultaneous and independent
optimization are compared for transitions in BII. This table shows that, for expansions up
to n = 10, the orbital bases from the two methods yield results which generally differ by less
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Table 2. Convergence of theLS line strengthS for simultaneous and independent optimization
in B II. Sl is the length form andSv the velocity form. The notation E +(−)n denotes×10n.
The results from simultaneous optimization appear above those for independent optimization. The
difference (in %) is relative to the average ofSl andSv .

Transition E (cm−1) Sl Sv Difference (%)

2s2 1S–2s2p1Po 73 445.70 4.479 4E+00 4.483 7E+00 0.095 9
73 447.14 4.479 3E+00 4.484 1E+00 0.107 1

2s2 1S–2s3p1Po 144 145.15 2.485 0E−01 2.485 2E−01 −0.007 2
144 146.56 2.486 0E−01 2.486 1E−01 −0.004 8

2s2p3Po–2s3d3D 113 349.86 1.244 6E+01 1.241 6E+01 0.241 3
113 349.83 1.242 3E+01 1.241 6E+01 0.056 4

2s2p3Po–2p2 3P 61 711.52 1.645 5E+01 1.640 2E+01 0.322 6
61 706.14 1.645 6E+01 1.640 3E+01 0.322 6

2s2p3Po–2s3s3S 92 428.25 2.052 1E+00 2.037 4E+00 0.718 9
92 427.81 2.046 2E+00 2.038 4E+00 0.381 9

2s2p1Po–2p2 1D 29 076.81 5.505 1E+00 5.449 3E+00 1.018 8
29 076.70 5.504 7E+00 5.448 3E+00 1.029 9

2s2p1Po–2s3d1D 81 303.55 6.267 6E+00 6.284 9E+00 −0.275 6
81 303.57 6.266 3E+00 6.284 8E+00 −0.294 8

2s2p1Po–2p2 1S 54 378.01 4.102 5E+00 4.102 3E+00 0.004 9
54 377.92 4.102 1E+00 4.102 5E+00 −0.009 8

2s2p1Po–2s3s1S 64 260.02 2.651 0E−03 2.225 2E−03 17.464 4
64 259.69 2.657 6E−03 2.212 2E−03 18.292 3

2p2 3P–2s3p3Po 44 957.20 2.651 8E−03 2.376 9E−03 10.933 2
44 962.58 2.631 4E−03 2.399 6E−03 9.214 9

2p2 1D–2s3p1Po 41 622.65 1.537 7E+00 1.567 1E+00 −1.893 8
41 622.71 1.538 5E+00 1.566 7E+00 −1.816 3

2s3s3S–2s3p3Po 14 240.91 6.142 8E+01 6.117 0E+01 0.420 9
14 240.47 6.143 9E+01 6.119 4E+01 0.399 6

2p2 1S–2s3p1Po 16 321.45 3.993 3E+00 3.977 7E+00 0.391 4
16 321.49 3.993 9E+00 3.980 9E+00 0.326 0

2s3s1S–2s3p1Po 6 439.44 1.522 7E+01 1.533 2E+01 −0.687 2
6 439.72 1.522 7E+01 1.533 0E+01 −0.674 1

2s3p1Po–2s3d1D 10 604.09 4.330 6E+01 4.313 1E+01 0.404 9
10 604.16 4.330 9E+01 4.312 7E+01 0.421 1

2s3p3Po–2s3d3D 6 081.13 1.193 7E+02 1.196 3E+02 −0.217 6
6 081.11 1.193 3E+02 1.196 9E+02 −0.301 2

than 0.1%. An exception is the length form of the 2s2p3Po–2s3d3D and 2s2p3Po–2s3s3S
where trends show the velocity form to be the more stable and so the differences from the
two models are somewhat larger, but still less than 0.4%. Others are the two transitions,
2s2p1Po–2s3s1S and 2p2 3P–2s3p3Po, where the line strength is exceedingly small. Except
when the line strength is small, the difference in length and velocity forms themselves are
generally less than 1%, though there is variation.

For the neutral atom, or ions with low degrees of ionization, term dependence can be
expected to be larger. Intuitively, independent optimization should produce accurate transition
data with a smaller basis. This is shown in figure 1 for 2s2p3Po–2p2 3P and 2s2p3Po–2s3d3D
transitions in BII. Here it is seen that independent optimization (lighter lines) converges faster,
has the smoother convergence trend, particularly at lown, and that for these two transitions
the two optimization schemes converge to about the same length or velocity line strength at
n = 10. For the former transition, because of the large scale, length and velocity appear not to
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Figure 1. Comparison of convergence of the line strength for independent (light curves) and
simultaneous (dark curves) optimization.Sl : solid curves;Sv : dashed curves.

be in good agreement, although, in fact, the difference is only 0.32%. The second transition is
somewhat different. The 2s3d1D has a strong interaction with 2p2 1D. At the Hartree–Fock
level the latter lies above the 2s4d1D [16] and a few layers of correlation orbitals are needed to
obtain the correct spectrum. Similar problems do not exist for the 2s3d3D state and independent
optimization converges rapidly. When optimizing simultaneously, the3D state can be expected
to have a different convergence pattern since the orbitals now also need to represent the 2s3d1D
state. It is interesting to note that the velocity form for the two optimization schemes converges
more rapidly than the length form. This probably is related to the emphasis on the inner region
for the velocity form: independent and simultaneous optimization can be expected to differ
more in the outer regions. For many transitions, like 2s2p3Po–2p2 3P, theLS trends have
converged already atn = 8, but for others such as 2s2p3Po–2s3d3D or 2s2p1Po–2s3s1So,
where the line strength is extremely small due to cancellation (see table 2) the larger basis was
needed.

5. Breit–Pauli results

The orbital basis from simultaneous optimization may be used to determineJ -dependent
energy levels and transition rates. In table 3 we report the lifetimes of all the levels of the
configurations considered in this work. These are based primarily on the allowed E1 transitions
between the different states but the M2 transitions, 2s2 1S0–2s2p3Po

2, were also computed as
well as the E2 and M1 transitions, 2s2p3Po

0,1–2s2p3Po
2, which contribute to the lifetime of

the latter. In other cases, the contributions from these forbidden transitions to the lifetime
are negligible but calculations were also performed for 2s2p3Po

0,1,2–2s2p1Po
1. A complete set

of transition data (transition energies, line strength, oscillator strengths, transition rates) is
available at http://www.vuse.vanderbilt.edu/∼cff/mchf collection. This site also reportsLS
convergence trends, including the length and velocity forms of the line strength, which we will
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Table 4. Comparison of computed spectrum for OV with tabulated NIST [37] data.

Level (cm−1) Splitting (cm−1)

Configuration Term J Theory Observation Difference Theory Observation Difference

2s2p 3Po 0 81 985.55 81 942.5 43.05
1 82 122.69 82 078.6 44.09 137.14 136.1 1.04
2 82 429.97 82 385.3 44.67 444.20 442.80 0.58

1Po 1 158 933.17 158 797.7 135.47
2p2 3P 0 213 794.44 213 462.5 331.94

1 213 951.36 213 618.2 333.16 156.92 155.7 1.22
2 214 220.31 213 887.0 333.31 425.87 424.5 0.15

1D 2 232 119.96 231 721.4 398.56
1S 0 288 434.36 287 910.3 524.06

2s3s 3S 1 547 153.70 546 972.7 181.00
1S 0 561 500.34 561 276.4 223.94

2s3p 1Po 1 581 027.89 580 824.9 202.99
3Po 0 582 986.32 582 806.4 179.92

1 583 023.21 582 843.1 180.11 36.89 36.7 0.19
2 583 100.70 582 920.3 180.40 114.38 113.9 0.29

2s3d 3D 1 600 964.57 600 748.9 215.67
2 600 974.73 600 758.9 215.83 10.16 10.0 0.16
3 600 994.61 600 779.2 215.41 30.04 30.3 −0.42

1D 2 612 856.04 612 615.6 240.44

show in the next section can be used in the estimation of accuracy. All other reported data are
based on BP line strengths in the length form. For each atom or ion, an ASCII file may be
viewed or downloaded that contains all the information about the transitions in floating point
form, suitable for processing.

6. Accuracy of Breit–Pauli energies

The accuracy of computed oscillator strengths and transition rates depends not only on the line
strength but also on the transition energies. The latter can often be measured more accurately
than computed, and computed transition data can be improved through scaling so that, in effect,
the observed transition energy is used. However, for the production of large amounts of data
this is not practical since, particularly for more highly ionized systems, the data may not be
available. Our aim in this paper is to predict transitions to within a fraction of a per cent. This,
of course, is more easily achieved when the transition energy is large than when it is small.

Table 4 compares the computed spectrum with observation for OV, where both correlation
and relativistic effects are important. The difference in the excitation energies (theory–
observed) appears to be largest for the 2p2 configuration, possibly because of the neglect
of core correlation. In all other cases, the difference is a few 100 cm−1. The splitting is
reported too. It is defined here to be the energy with respect to the lowest level of the multiplet
so that this value for the highest level gives the spread of the multiplet. The latter is a useful
measure of the adequacy of the BP approximation, as will be described in the next section.
All the theoretical energies and splittings were computed from variational total energies with
somewhat more precision than displayed in this table.

As an example of some of the data available at the internet site, table 5 shows a portion of
the E1 line list and associated data. Omitted are some of the intercombination lines with small
transition rates. This is fullyab initio data.
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Table 5. A portion of the computed line list data for OV. Omitted are some of the intercombination
lines with small transition rates. The notation E +n denotes×10n.

Multiplet Ji–Jk E (cm−1) S gf Aki (s−1)

2s3p3Po
0–2s3d3D 2–1 17 863.87 0.105 9 0.005 75 4.076 74E+05

2–2 17 874.03 1.589 2 0.086 28 3.677 42E+06
2–3 17 893.91 8.907 1 0.484 13 1.477 13E+07
1–1 17 941.36 1.587 9 0.086 54 6.193 51E+06
1–2 17 951.52 4.766 0 0.259 88 1.117 25E+07
0–1 17 978.25 2.119 1 0.115 73 8.316 68E+06

2s3s1S–2s3p1Po 0–1 19 527.56 3.621 7 0.214 83 1.821 40E+07
2s3p1P–2s3d1D 1–2 31 828.15 6.898 0 0.666 89 9.012 63E+07
2s3s3S–2s3p3Po 1–0 35 832.62 1.479 1 0.160 99 1.378 80E+08

1–1 35 869.51 4.434 7 0.483 18 1.382 23E+08
1–2 35 947.00 7.398 8 0.807 89 1.392 67E+08

2s2p1Po–2p2 1D 1–2 73 186.79 2.118 5 0.470 96 3.365 28E+08
2s2 1S–2s2p3Po 0–1 82 122.69 0.000 0 0.000 00 2.287 54E+03
2s2p1Po–2p2 1S 1–0 129 501.18 0.870 8 0.342 54 3.831 83E+09
2s2p3Po–2p2 3P 2–1 131 521.39 0.596 6 0.238 35 9.167 09E+08

1–0 131 671.75 0.477 3 0.190 89 2.207 52E+09
2–2 131 790.35 1.790 0 0.716 56 1.660 32E+09
1–1 131 828.68 0.358 0 0.143 35 5.539 18E+08
0–1 131 965.82 0.477 3 0.191 34 7.408 97E+08
1–2 132 097.63 0.596 8 0.239 46 5.574 27E+08

2s2 1S–2s2p1Po 0–1 158 933.17 1.059 8 0.511 63 2.873 47E+09
2p2 1S–2s3p1Po 0–1 292 593.54 0.005 7 0.005 05 9.620 03E+07
2p2 1D–2s3p1Po 2–1 348 907.93 0.072 8 0.077 21 2.089 78E+09
2p2 1D–2s3p3Po 2–1 350 903.25 0.000 1 0.000 07 1.827 03E+06

2–2 350 980.74 0.000 0 0.000 00 3.307 98E+03
2p2 3P–2s3p3Po 2–1 368 802.90 0.000 7 0.000 79 2.397 61E+07

2–2 368 880.39 0.002 2 0.002 46 4.464 97E+07
1–0 369 034.96 0.000 6 0.000 64 5.791 40E+07
1–1 369 071.85 0.000 4 0.000 48 1.462 17E+07
1–2 369 149.34 0.000 7 0.000 83 1.502 01E+07
0–1 369 228.78 0.000 6 0.000 65 1.962 36E+07

2s2p1Po–2s3s1S 1–0 402 567.17 0.043 2 0.052 77 5.704 30E+09
2s2p1Po–2s3d1D 1–2 453 922.87 1.131 7 1.560 46 4.289 32E+10
2s2p3Po–2s3s3S 2–1 464 723.74 0.151 0 0.213 21 1.023 82E+10

1–1 465 031.02 0.090 4 0.127 63 6.136 79E+09
0–1 465 168.16 0.030 1 0.042 50 2.044 49E+09

2s2p3Po–2s3d3D 2–1 518 534.60 0.020 3 0.032 01 1.913 76E+09
2–2 518 544.77 0.304 8 0.480 10 1.722 17E+10
2–3 518 564.64 1.706 1 2.687 43 6.886 31E+10
1–1 518 841.88 0.304 6 0.479 99 2.872 90E+10
1–2 518 852.05 0.913 4 1.439 60 5.170 15E+10
0–1 518 979.02 0.405 9 0.639 87 3.831 87E+10

2s2 1S–2s3p1Po 0–1 581 027.90 0.226 3 0.399 55 2.999 10E+10
2s2 1S–2s3p3Po 0–1 583 132.64 0.000 1 0.000 26 1.988 90E+07

The errors (in %) for all the excitation energies are reported in table 6. All are well below
the 1% level. This, however, does not guarantee a similar accuracy for all transition energies.
In table 7 are reported, first the difference in the length and velocity form of the line strength
(in % with respect to the average(Sl + Sv)/2) of theLS calculation and then the error (in %)
in the transition energy from the BP calculation.
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Table 6. Excitation energy differences (in %) from NIST tabulated data [33] unless indicated
otherwise.

Z

Term J 4 5a 6 7 8 9a 10a 11 12

2s2p3Po 0 0.54 0.08 0.05 0.04 0.05 0.12 0.17 0.29 0.46
1 0.54 0.09 0.05 0.04 0.05 0.12 0.17 0.29 0.46
2 0.54 0.09 0.05 0.04 0.05 0.12 0.17 0.29 0.46

2s2p1Po 1 0.34 0.11 0.09 0.08 0.08 0.10 0.14 0.20 0.30
2p2 3P 0 0.16 0.22 0.17 0.15 0.15 0.19 0.24 0.35 0.51

1 0.16 0.22 0.17 0.15 0.16 0.19 0.24 0.35 0.51
2 0.16 0.22 0.17 0.15 0.16 0.19 0.24 0.35 0.51

2p2 1D 2 0.11 0.23 0.18 0.17 0.17 0.20 0.24 0.36 0.51
2p2 1S 0 0.18 0.20 0.18 0.18 0.19 0.24 0.31 0.43
2s3s3S 1 0.00 0.02 0.03 0.03 0.03 0.04 0.04 0.07 0.09
2s3s1S 0 0.19 0.10 0.04 0.04 0.04 0.05 0.04 0.06 0.09
2s3p1Po 1 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.07
2s3p3Po 0 0.11 0.04 0.03 0.03 0.03 0.03 0.04

1 0.11 0.04 0.03 0.03 0.03 0.04 0.04
2 0.11 0.05 0.03 0.03 0.03 0.04 0.04

2s3d3D 1 0.18 0.06 0.05 0.04 0.04 0.04 0.04 0.05 0.06
2 0.18 0.06 0.05 0.04 0.04 0.04 0.04 0.05 0.06
3 0.18 0.06 0.05 0.04 0.04 0.04 0.04 0.05 0.06

2s3d1D 2 0.09 0.06 0.05 0.04 0.04 0.04 0.04 0.05 0.06

a From Kelly [17].

7. Recommended values and estimates of accuracy

Theoretical transition rates can be improved by scaling to the observed transition energy. Let
t (for transition) be defined as

t = 1Eobs/1Eth. (6)

Then, for allowed transitions, the recommendednormalizedgf value is

gf (norm) = t × gfl(th) (7)

wheregfl(th) is the computed length value that correctly includes relativistic effects of lowest
order. In this work, the relativistic effects on allowed transitions are not large. If we assume
that the error is due primarily to the neglected correlation, then we propose an uncertainty
estimate that is based, in part, on the difference in the two forms of theLS line strength. But
agreement in length and velocity is a necessary, though not sufficient, condition for accuracy:
the transition energy also needs to be correct. Letc be the relative discrepancy in the length
and velocity forms of theLS average line strength, ande be the relative error in theLSJ
transition energy: namely,

c = 2|Sl − Sv|/(Sl + Sv) and e = |1Eth −1Eobs|/1Eobs. (8)

Then we propose an uncertainty estimate of(c + e)gf (norm). In some earlier work [18] on
allowed transitions, using non-relativistic line strength but scaling for the transition energy,
the formula(1.5c + 0.1e)gf (norm) was proposed. We will evaluate these hypotheses in the
next section.

For intercombination lines, wheregf values are extremely small, transition rates are
usually reported rather than oscillator strengths. These depend on the mixing of terms, which,
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Table 7. Accuracy indicators for allowed transitions. The first line shows the differences between
Sv andSl (in %) and the second line the differences (in %) between computed BP transition energies
and transition energies from NIST data (average for each term).

Z

Transition 4 5 6 7 8 9 10 11 12

2s2 1S–2s2p1Po 0.18 −0.09 −0.11 −0.12 −0.12 −0.11 −0.11 −0.10 −0.10
0.34 0.08 0.05 0.04 0.04 0.04 0.05 0.06 0.09

2s2 1S–2s3p1Po 0.15 0.09 0.02 0.02 0.03 0.03 0.03 0.03 0.03
0.08 0.13 0.04 0.04 0.04 0.04 0.04 0.05 0.07

2s2p3Po–2s3d3D 2.76 0.24 0.12 0.08 0.05 0.04 0.04 0.03−0.03
−0.02 0.05 0.05 0.04 0.03 0.03 0.02 0.03 0.02

2s2p3Po–2p2 3P −0.09 0.32 0.31 0.30 0.28 0.26 0.21 0.22 0.21
−0.06 0.31 0.26 0.23 0.22 0.24 0.28 0.39 0.55

2s2p3Po–2s3s3S 2.61 0.72 0.50 0.35 0.31 0.25 0.22 0.20 0.17
−0.40 −0.002 0.02 0.09 0.03 0.03 0.03 0.04 0.05

2s2p1Po–2p2 1D −128 1.02 0.95 0.86 0.78 0.71 0.65 0.60 0.56
−0.57 0.53 0.42 0.37 0.37 0.40 0.46 0.67 0.93

2s2p1Po–2s3d1D −4.55 −0.28 −0.17 −0.13 −0.10 −0.08 −0.07 −0.06 −0.05
−0.40 0.01 0.03 0.02 0.02 0.02 0.01 0.02 0.01

2s2p1Po–2p2 1S — 0.05 0.16 0.19 0.19 0.19 0.18 0.17 0.16
— 0.27 0.33 0 .31 0.30 0.31 0.36 0.45 0.58

2s2p1P–2s3s1S −3.77 17.46 −0.95 −0.85 −0.70 −0.60 −0.52 −0.47 −0.44
0.31 3.25 0.01 0.01 0.02 0.03 0.02 0.03 0.04

2p2 3P–2s3p3Po −199 10.93 0.17 −0.53 −0.44 −0.27 −0.22 −0.19 −0.17
3.57 −0.35 −0.13 −0.06 −0.04 −0.04 −0.05 — —

2p2 1D–2s3p1Po −6.00 −1.89 −2.26 −2.26 −1.78 −1.61 −1.45 −1.34 −1.25
−0.55 −0.43 −0.16 −0.08 −0.06 −0.05 −0.06 −0.07 −0.08

2s3s3S–2s3p3Po 1.78 0.42 0.29 −0.19 0.12 0.11 0.16 0.15 0.11
1.01 0.26 0.08 0.05 −0.01 −0.11 −0.13 — —

2p2 1S–2s3p1Po — 0.39 −0.28 0.02 0.06 0.04 −0.05 0.04 0.05
— −1.06 −0.33 −0.17 −0.11 −0.09 −0.09 −0.09 −0.10

2s3s1S–2s3p1Po −2.25 −0.69 −0.30 −0.37 −0.43 −0.32 −0.24 −0.19 −0.19
−1.13 −0.78 −0.01 0.07 −0.06 −0.20 −0.28 −0.42 −0.67

2s3p1Po–2s3d1D −0.23 0.40 0.36 0.43 0.21 0.21 0.19 0.19 0.18
0.28 0.33 0.22 0.15 0.09 0.07 0.05 0.03−0.26

2s3p3Po–2s3d3D 5.90 −0.22 −0.43 −0.35 −0.29 −0.27 −0.24 −0.23 −0.22
1.38 0.30 0.38 0.28 0.19 0.13 0.08 — —

in turn, depend on the separation of these terms. As first shown by Fleminget al [19], by using
the observed term energy separation, the theoretical transition rates can be improved. Usually,
only one term is an important player. For example, in the 2s2 1S0–2snp3Po

1 transitions, the
important mixing is between the terms of 2snp and, to first order, the mixing is proportional
to the square of the inverse of the term separation. Lets (for separation) be defined as

s = 1Eobs(
1Po

1–3Po
1)/1Eth(

1Po
1–3Po

1) (9)

then a normalized transition rate is

A(norm) = t3A(th)/s2. (10)

The uncertainty is now based on two factors, the uncertainty in the line strength of the primary
‘allowed’ transition and the uncertainty in the relativistic (BP) mixing of terms. It was further
suggested by Fleminget al [19] and Hibbert [20] that the latter was related to the spread in the
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fine-structure. Letr (for relativistic) be defined as

r = 1Eobs(
3Po

2–3Po
0)/1Eth(

3Po
2–3Po

0). (11)

Then a ‘fine-tuned’ value is

A(fine) = r2A(norm). (12)

When core correlation is omitted, as in this paper for all but BeI, it has been shown [7] that
A(fine) is in good agreement with experiment and is our recommended value. For converged
results, we propose the uncertainty inA, say1A, as

1A = |A(fine)− A(norm)| + (|c| + |e|)A(norm). (13)

This scheme is similar to the one recommended by Brageet al [21] for the estimation of errors
in Be-like intercombination lines where, in effect, the error in the transition energy,e, was
ignored.

For the forbidden transitions, Fleminget al [22] propose a similar scheme. To obtain
recommended values, we first scale to the observed transition energy. In general, transition
rates scale as

A(scaled) = t2λ+1A(th) (14)

whereλ = 1 for E1 and M1 transitions andλ = 2 for E2 and M2 transitions. Then, if
the transition depends on mixing, similar factors need to be considered as in the case of
intercombination lines. In the present case, such mixing is negligible and the only adjustments
are scaling to the observed transition energy. In the next section we apply some of these ideas
when comparing present work with other theories, experiment, or semi-empirical experimental
predictions obtained from smoothing of experimental data.

8. Comparison with previous results, experiment, and semi-empirical evaluations

Some of the transitions included in this work have been benchmark calculations for the
MCHF + BP method. In all of these, core correlation was included and present results will not
be quite as accurate. Many comparisons can be found in earlier publications without particular
concern about relativistic effects. A method much like MCHF+BP that also diagonalizes a BP
Hamiltonian is CIV3 [19,20] except that orbitals are analytic and are optimized in a carefully
selected manner as determined by the problem. When relativistic effects are expected to
be small, non-relativistic MCHF calculations, denoted MCHF(nr), may be used for the line
strength along with observed transition energies in the oscillator strength calculation [18].
For Be, full core plus correlation (FCPC) results are similar in that relativistic effects are not
included in the calculation of the line strength [28]. Fully relativistic methods include the
MCDF method and relativistic many-body perturbation (RMBPT) methods that also include
the Breit correction. Although the Breit correction in MCDF calculations based on the Dirac–
Coulomb Hamiltonian is not as important in allowed transitions, they are extremely important
in intercombination lines [23].

In table 8, thegf values of the 2s2 1S0–2s2p1Po
1 and 2s2 1S0–2s3p1Po

1 transitions are
compared with benchmark calculations, recent results from either theory or experiment, and,
at least for the former transition, two collections of experimental data that have been iso-
electronically smoothed. There is variation in the latter. The Reistad and Martinson iso-
electronically smoothed values [30] used fewer experimental values than those reported in [25]
which included some higherZ values. The newly reportedgf values for BeI and BII [24]
are significantly larger than the ones used by Reistad and Martinson [30] and would change
their smoothed values a lot. Possibly with this new data, their error bars could be reduced. It
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should be mentioned that the validity of the smoothing procedure was already been raised by
Fleminget al [32]. Also included in the table are semi-empirical (SE) values that analyse
the allowed and intercombination transitions simultaneously, deriving a mixing angle for
singlet–triplet mixing. This theory has been applied to both allowed transitions. Relativistic
effects play a minor role in the allowed transitions and so semi-empirical values for the former
transition are generally close to the iso-electronically smoothed experimental values. For the
2s2 1S0–2s3p1Po

1 transitions, the line strength is considerably smaller and the singlet–triplet
mixing less readily determined since, in fact, in BII the two states are almost degenerate, with
3Po slightly lower, and thereafter the1Po being the lower state. Thus a smooth mixing angle
is not likely to be valid. Since 2s3p is an excited configuration, branching ratios are needed
before transition rates can be extracted from measured lifetimes. All these difficulties are
reflected in the much larger differences between the SE and present work values for the latter
transition.

Experimental data for 2s2 1S0–2s2p1Po
1 is available for all these spectra except FVI.

Here we report the NIST tabulations for the oscillator strengths which references indicate
were obtained from theory dating back to 1964 and was given an accuracy rating of ‘E’ for
uncertainties larger than 50%. For 2s2 1S0–2s3p1Po

1 far more experimental oscillator strengths
are missing. However, since it is important to be able to compare with the experimental
transition energy as tabulated by NIST, we also include the NISTgf values along with accuracy
classifications.

Not unexpectedly, this paper agrees best with other theories, especially when theories
are normalized to the observed transition energy, a scaling often omitted by theorists. It
is interesting to note the uncertainty estimates which in this case are based entirely on the
discrepancy in length and velocity forms of theLS line strength and the error in the transition
energy. For the 2s2 1S0–2s2p1Po

1 transitions the uncertainty estimates appear reasonable. In
fact, the normalized values are in near-perfect agreement to four significant digits withall
normalized MCDF values [6, 23, 25] which is remarkable. The good agreement with the
MCHF(nr) results of J̈onssonet al [18] is an indication that relativistic effects on the line
strength in the length form are not large. It is noted that the uncertainty estimates of their
results and present work are similar. On the other hand, the errors in their energies are
much larger but the formula used for determining uncertainties included only 10% of the
error in the energy, whereas in this paper we have included 100% of this error in computing
uncertainties. At the same time, the two results are within their uncertainties. Not included
are the Safronovaet al [39] RMBPT results which use only a first-order theory for obtaining
coupling coefficients. For MgIX, which could be expected to be the most accurate in our range
of Z, their quotedA-rate would convert to agf -value of 0.292, quite a bit smaller than the
experimental and theoretical values included in table 8.

Although comparison with other theories like MCDF for 2s2 1S0–2s2p1Po
1 suggests that

maybe the formula for uncertainties produces uncertainties that are too large, they seem
unreasonably small for 2s2 1S0–2s3p1Po

1. The present values have not included core correlation
effects, effects included in the earlier MCHF study, where systematic effects and extrapolation
were included in deriving the uncertainty estimates. The RMBPT results of Safronovaet al
[38], were expected to be in error by several per cent in this energy range, improving asZ

increases. Although matrix elements were computed to second order, the coupling coefficients
(in jj ) were computed only to first order. This is not expected to introduce large errors for the
allowed transition, but they are large enough that no clear decision can be made with regard
to the accuracy of our uncertainty estimates.

In table 9, the transition rates for the 2s2 1S0–2s2p3Po
1 and 2s2 1S0–2s3p3Po

1
intercombination lines are compared with benchmark calculations. All MCHF results are fine-
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Table 8. Comparison of adjusted oscillator strengths for the allowed 2s2 1S0–2s2p1Po
1 and

2s2 1S0–2s3p1Po
1 transitions. The present oscillator strengths have been converted to observed

transition energies with uncertainties determined from the discrepancy in the length and velocity
forms of the line strength (see the text). Oscillator strengths from NIST tabulations are followed
by their accuracy rating.

2s2p1Po
1 2s3p1Po

1

Element 1E (cm−1) gf Source Ref. 1E (cm−1) gf Source Ref.

Be I 42 565 1.40(6) Experimenta [24] 60 187 — NIST [33]
1.339 Experimenta [25]
1.341 7 SE [26]

42 591 1.375(7) MCHF+CIV3 [27]
42 749 1.371 1 MCHF(nr) [18] 60 189 0.008 85(5) MCHF [35]
42 569 1.374 FCPC [28] 60 194 0.009 14(1) FCPC [28]
42 604 1.375 Mod. Pot. [29] 60 226 0.009 01 Mod. Pot. [29]
42 693 1.372 6(21) Present work 60 233 0.009 0(2) Present work

B II 73 397 0.98(6) Experimenta [24] 144 103 — NIST [33]
0.981 Experimenta [25]
0.970 1 SE [26] 0.075 8 SE [36]

73 655 0.997 6(22) MCHF(nr) [18]
73 592 0.998 5 MCDFb [23]
73 530 0.994 8(23) MCHF [23] 144 099 0.109 3(3) MCHF [35]
73 483 0.998 6(16) Present work 144 177 0.108 4(2) Present work

C III 102 352 0.754(14) Experimenta [30] 258 931 0.232(B) NIST [37]
0.760 Experimenta [25]
0.754 1 SE [26] 0.197 9 SE [36]

102 440 0.757 9(4) MCDFb [6] 259 309 0.267 RMBPT [38]
102 598 0.756 7(20) MCHF(nr) [18]
102 403 0.756 MCHF [3] 258 922 0.241 4(4) MCHF [35]
102 447 0.757 5(12) Present work 259 035 0.240 6(2) Present work

N IV 130 694 0.620(14) Experimenta [30] 404 522 0.327(B) NIST [37]
0.618 Experimenta [25]
0.616 3 SE [26] 0.285 8 SE [36]

130 830 0.609 3(16) MCHF(nr) [18]
131 029 0.610 2 MCDFb [25] 404 654 0.341 RMBPT [38]
130 780 0.609 0(20) MCHF+CIV3 [31] 404 504 0.333 8(4) MCHF [35]
130 801 0.610 0(12) Present work 404 666 0.333 1(2) Present work

O V 158 798 0.527(14) Experimenta [30] 580 525 0.392(B) NIST [37]
0.520 Experimenta [25] 0.353 3 SE [36]
0.521 2 SE [26] 580 855 0.399 RMBPT [38]

158 709 0.510 5(14) MCHF(nr) [18]
159 154 0.511 1 MCDFb [25] 580 791 0.400 3(5) MCHF [35]
159 179 0.511 CIV3 [32]
158 933 0.511 2(10) Present work 581 028 0.399 4(3) Present work

F VI 186 841 0.62(E) NIST [33] 787 844 0.478(E) NIST [33]
0.451 7 SE [26] 0.407 2 SE [36]

186 366 0.439 7(12) MCHF(nr) [18] 787 836 0.445 RMBPT [38]
187 224 0.440 5 MCDFb [25] 787 777 0.450 0(5) MCHF [35]
187 041 0.440 5(10) Present work 788 140 0.448 7(3) Present work
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Table 8. (Continued)

2s2p1Po
1 2s3p1Po

1

Element 1E (cm−1) gf Source Ref. 1E (cm−1) gf Source Ref.

Ne VII 214 952 0.395 Experimenta [25] 1 025 650 0.448 9 SE [36]
0.398 8 SE [26] 1 025 610 0.480 RMBPT [38]

213 894 0.386 7(11) MCHF(nr) [18]
215 350 0.387 5 MCDFb [25] 1 025 488 0.488 4(6) MCHF [35]
215 412 0.387 CIV3 [32]
215 260 0.387 5(10) Present work 1 026 055 0.486 2(3) Present work

Na VIII 243 208 0.362(17) Experiment [34] 1 294 230 0.537(E) NIST [33]
0.357 3 SE [26] 0.483 3 SE [36]

243 625 0.346 4 MCDFb [25] 1 294 180 0.508 RMBPT [38]
243 706 0.346 4(11) Present work 1 294 895 0.514 7(4) Present work

Mg IX 271 687 0.319 Experimenta [25] 1 593 600 0.508(B) NIST [33]
0.323 9 SE [26] 0.506 6 SE [36]

272 133 0.313 6 MCDFb [25] 1 593 625 0.528 RMBPT [38]
272 178 0.313 CIV3 [32]
272 479 0.313 6(12) Present work 1 594 738 0.535 1(5) Present work

a Smoothed experimental data.
b Scaled to observed transition energy.

tuned using observed data. For a core–valence calculation, both the fine-structure splitting and
theA-rate are too large and fine-tuning tends to improve the final transition rate [7]. However,
in B II, the observed fine-structure splitting has a rather large uncertainty and accurate studies
which also include correlation in the core suggest a value of 22.19 [7] or 22.2 [44] cm−1. In
this case, our reported fine-tunedA-rate used the former theoretical splitting which yields a
somewhat larger uncertainty.

For the 2s2 1S0–2s2p3Po
1 transitions, the present work is in reasonable agreement with the

semi-empirical model which should apply reasonably well. Like the present calculations, the
MCDF values [25] forZ > 7 did not include core correlation yet are consistently somewhat
smaller and outside our uncertainty limits. The latter appear reasonable in that there is
overlap with somewhat more accurate results that include core correlation and also report
uncertainties [21]. For the 2s2 1S0–2s3p3Po

1 transition less data are available for comparision,
but for all but BII there is good agreement with the SE transition rates, given the difficulty
of the SE analysis for the decay from this excited state. Not included in this table are the
recently published results of Safronovaet al [38]. For the intercombination line, the coupling
coefficients introduce extensive cancellation into the calculation and first-order coefficients are
not sufficient for reliable data in this range ofZ.

Finally, in table 10 we compare some of our transition energy adjusted data for forbidden
transitions (first line of data) with those of Fleminget al [22, 31] based on a similar BP
theory but including some core correlation (second line) and MCDF values [25,45] (all other
lines) where the former reference is to a core–valence calculation, whereas the latter also
includes correlation with the core, but orbitals were constrained to be the same for both the
initial and final state. Thus the values reported come from a variety of theories with different
approximations. The BP with core correlation might be expected to be the most accurate,
particularly at lowZ, but the orbital set for [22] was ann = 5 + 6p orbital set for core–valence
correlation, a basis not particularly well suited for representing correlation in 1s2. The MCHF
results of [31] include core correlation from the start and then proceed to ann = 8 orbital
set optimizing on the primary3Po term and determining an extra layer for the secondary1Po
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Table 9. Comparison of present data (energies and adjusted transition rates) for some
intercombination lines with other theory and experiment or the semi-empirical (SE) experimentally
smoothed data. All energy data are from NIST tabulations [33]. The present transition rates are
recommended values obtained from computed data along with uncertainties (see the text). The
uncertainties for transition rates are given in parentheses (in units in the last place). The notation
E +n denotes×10n.

Element 3Po
1–1Po

1
3Po

2–3Po
0 1E (cm−1) Aki (s−1) Source Ref.

2s2 1S0–2s2p3Po
1

B II 36 057 21.6±8 37 340 10.24(5) Experiment [40]
9.15 SE [36]

36 225 22.19 37 303 10.27(20) MCHF [7]
36 109 22.47 37 374 10.15(27)a Present work

C III 49 961 80.05 52 391 102.94(14) Experiment [8]
102.35 SE [36]

50 112 79.72 52 357 103.0(4) MCHF [7]
50 071 79.64 52 375 103.0(6) MCHF [21]
50 070 80.05 52 370 102.9(1.5) MCDF [6]
50 031 80.29 52 416 103.66(60) Present work

N IV 63 422 207.1 67 272 625(150) Experiment [41]
583.7 SE [36]

63 728 67 301 557.8 MCDFb [25]
63 552 206.4 67 224 575.1(4) MCHF [21]
63 502 207.6 67 298 578.4(27) Present work

O V 76 719 442.8 82 079 2.0(4)E+03 Experiment [41]
2332 SE [36]

77 050 82 104 2210 MCDFb [25]
76 719 442.8 82 001 2260(11) MCHF [21]
77 144 440.4 82 035 2256.6 CIV3 [22]
76 810 444.42 82 123 2276(16) Present work

Ne VII 103 242 1449. 111 705 2.2(11)E+04 Experiment [42]
19953 SE [36]

103 620 111 730 18608 MCDFb [25]
103 704 1442.5 11 708 19040.4 CIV3 [22]
103 660 1452.41 111 896 19236(140) Present work

2s2 1S0–2s3p3Po
1

B II 113 4.74 143 490 1.0E+05 SE [36]
126 4.68 144 189 2.7(6)E+05 MCHF [43]
127 4.67 144 053 2.9981(39)E+05 Present work

C III −780 18.75 259 711 4.0E+05 SE [36]
−769 18.82 259 818 5.0(2)E+05 MCHF [43]
−764 18.82 259 799 4.9705(62)E+05 Present work

N IV −1 465 51.2 405 988 2.8E+06 SE [36]
−1 451 51.59 406 131 3.2(1)E+06 MCHF [43]
−1 471 51.66 406 113 3.1937(36)E+06 Present work

O V −2 015 113.9 582 840 1.9E+07 SE [36]
−2 002 114.34 583 041 1.96(4)E+07 MCHF [43]
−1 995 114.38 583 023 1.9404(23)E+07 Present work

F VI −2 468 220. 790 316 1.0E+08 SE [36]
−2 457 221.06 790 610 9.89(9)E+07 MCHF [43]
−2 449 221.10 790 589 9.7608(130)E+07 Present work
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Table 9. (Continued)

Element 3Po
1–1Po

1
3Po

2–3Po
0 1E (cm−1) Aki (s−1) Source Ref.

Ne VII −2 839 388.2 1 028 499 4.18E+08 SE [36]
−2 838 388.37 1 028 917 4.15(4)E+08 MCHF [43]
−2 829 388.51 1 028 884 4.1578(57)E+08 Present work

a Fine-tuned using an accurate theoretical value of the term splitting [7].
b Scaled to observed transition energy.

Table 10. Comparison of present transition energy adjusted M1, E2, and M2 transition rates (in
s−1) from 2s2p3Po with other theories. For each transition, the first line is present work, the
second from other BP calculations, and the remaining from MCDF calculations, scaled to observed
energies. The notation E +(−)n denotes×10n.

Z = 5 Z = 6 Z = 7 Z = 8 Z = 10 Z= 12
Aki [Ref] Aki [Ref] Aki [Ref] Aki [Ref] Aki [Ref] Aki [Ref]

3Po
1–3Po

2 M1
5.795E−08 2.446E−06 4.070E−05 3.907E−04 1.333E−02 2.024E−01
5.26E−08 [22] 2.33E−06 [22] 4.026E−05a [31] 3.80E−04 [22] 1.30E−02 [22] 1.96E−01 [22]

2.586E−06 [45] 4.118E−05 [45] 3.921E−04 [45]
3Po

0–3Po
1 M1

4.281E−09 2.378E−07 4.496E−06 4.631E−05 1.682E−03 2.568E−02
3.80E−09 [22] 2.27E−07 [22] 4.516E−06a [31] 4.62E−05 [22] 1.73E−03 [22] 2.77E−02 [22]
3Po

0–3Po
2 E2

9.276E−16 1.482E−13 6.481E−12 1.335E−10 1.473E−08 5.437E−07
7.93E−16 [22] 1.37E−13 [22] 6.415E−12a [31] 1.23E−10 [22] 1.44E−08 [22] 5.41E−07 [22]

1.344E−13 [45] 6.203E−12 [45] 1.308E−10 [45]
3Po

1–3P 0
2 E2

4.152E−16 5.823E−14 2.389E−12 4.748E−11 5.072E−09 1.868E−07
3.58E−16 [22] 5.37E−14 [22] 4.50E−11 [22] 4.81E−09 [22] 1.75E−07 [22]

6.388E−14 [45] 2.435E−12 [45] 4.765E−11 [45]
1So

0–3P o
2 M2

1.718E−03 5.203E−03 1.156E−02 2.167E−02 5.769E−02 1.253E−01
1.72E−03 [22] 5.15E−03 [22] 1.144E−02 [31] 2.16E−02 [22] 5.77E−02 [22] 1.25E−01 [22]
1.698E−03b 5.139E−03 [6] 1.151E−02 [25] 2.154E−02 [25] 5.745E−02 [25] 1.247E−01 [25]

5.130E−03 [45] 1.143E−02 [45] 2.151E−02 [45]

a MCHF results.
b MCDF calculation including core correlation (unpublished).

term. These results, reported only for NIV, are expected to be the most accurate. ForZ = 7,
all the present transition rates agree to about 1% with these values. In BII, the present values
for M1 and E2 transitions are 10–15% larger than the BP values of [22], but for higherZ

agreement improves somewhat for M1 and E2 transitions. For the M2 transition, it was found
that for the present core–valence model, the choice of 1s affected the rate more than in any other
transition. The results reported here are based on separate calculations for 2s2 1S0 where the 1s
orbital was taken from simultaneous optimization of 2s2p1,3Po. A separate MCDF calculation
was performed for the M2 transition in BII also including core correlation, normalized to
the observed transition energy, which differs from the present work by 1%. Generally, all
theories are in good agreement but the excellent agreement with the MCDF results based on
independent optimization of the initial and final state [25] is reassuring: differences are at the
1% level.
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9. Conclusions

In this paper we present an analysis of the transition data obtained for all transitions between
levels of the Be-like energy spectrum where the most highly excited state is 2s3d1D2, for
46 Z 6 12. A simultaneous optimization scheme was used in the production of this data so
that BP interactions could determine mixing of terms, removing some of the arbitrary decisions
in other schemes such as the (n, n + 1) scheme where primary and secondary terms need to be
designated: the choice is not obvious. In this work, it was assumed that the choice of 1s would
not be critical, that a 1s obtained from ann = 3 valence correlation calculation for simultaneous
optimization would provide the needed accuracy. Most transitions were not sensitive (at the
0.5% level) to this choice except for the M2 transition 2s2 1S0–2s2p3Po

2. In retrospect, when
the mixing from a different configuration is small, it would be more appropriate to determine
the 1s from the state for which a basis is being determined as was done in the present work
only for the ground state.

The present calculations did not include correlation in the core, except for BeI where
there is less mixing of terms because of the much smaller relativistic effects. When a similar
scheme is applied to the other first-row sequences, inclusion of core correlation will not be
possible because of the larger size of the expansions that will be generated. Since the Be-like
sequence has been studied so extensively, the present core–valence model could be validated as
has been done here. An attempt has been made to find accuracy measures for transition energy
adjusted data. Although length and velocity forms of theLS line strength can be expected to
be critical factors, particularly when the transition energy has an error less than 1%, the errors
in the adjusted oscillator strengths (or transition rates) may well be larger than the length and
velocity discrepancy might indicate. For this reason, the error in the BP transition energy
was also suggested as a factor. More accurate estimates require an analysis of trends (length
and velocity may both be decreasing, for example) as well as other factors that depend on the
computational model as was done for 2s2 1S0–2s3p1Po

1 [35], for example.
The procedures described here lend themselves to the production of large amounts of data

by fairly automatic schemes. The large BP calculations were performed on the T3E at the
National Energy Research Scientific Computing Center (NERSC) using an MPI version of the
code and employing 32 processors for large cases.

Acknowledgment

This research was supported by the Division of Chemical Sciences, Office of Basic Energy
Sciences, Office of Science, US Department of Energy.

References

[1] Seaton M J 1996Phys. Scr.T 65129
[2] The Opacity Team 1995The Opacity Project(Bristol: Institute of Physics Publishing)
[3] Froese Fischer C 1994Phys. Scr.4951
[4] Godefroid M R, Froese Fischer C and Jönsson P 1996Phys. Scr.T 6570
[5] Froese Fischer C 1999Phys. Scr.T 8349
[6] Jönsson P and Froese Fischer C 1998Phys. Rev.A 574967
[7] Froese Fischer C and Gaigalas G 1997Phys. Scr.56436
[8] Doerfert J, Tr̈abert E, Wolf A, Schwalm D and Uwira O 1996Phys. Rev. Lett.784355
[9] Froese Fischer C, Saparov M, Gaigalas G and Godefroid M 1998At. Data Nucl. Data Tables70119

[10] Froese Fischer C, Brage T and Jönsson P 1997Computational Atomic Structure—An MCHF Approach(Bristol:
Institute of Physics Publishing)

[11] Davidson E R 1975J. Comput. Phys.1787



Breit–Pauli energy levels, lifetimes, and transition data 5823

[12] Stathopoulos A and Froese Fischer C 1994Comput. Phys. Commun.64268
[13] Drake G W F1972Phys. Rev.A 5 1979
[14] Olsen J, Godefroid M, J̈onsson P, Malmqvist P Å and Froese Fischer C 1995Phys. Rev.E 524499
[15] Froese Fischer C and He XCan. J. Phys.at press
[16] Froese Fischer C 1984Phys. Rev.A 302741
[17] Kelly R L http://cfa-www.harvard.edu/amdata/ampdata /kelly/kelly.html
[18] Jönsson P, Froese Fischer C and Godefroid M R 1999J. Phys. B: At. Mol. Opt. Phys.321233
[19] Fleming J, Hibbert A and Stafford R P 1994Phys. Scr.49316
[20] Hibbert A 1996Phys. Scr.T 65104
[21] Brage T, Fleming J and Hutton RMon. Not. R. Astron. Soc.in preparation
[22] Fleming J, Bell K L, Hibbert A, Vaeck N and Godefroid M R 1996Mon. Not. R. Astron. Soc.2791289–93
[23] Ynnerman A and Froese Fischer C 1995Z. Phys.D 341
[24] Irving R E, Henderson M, Curtis L J, Martinson I and Bengtsson P 1999Can. J. Phys.77137
[25] Jönsson P, Froese Fischer C and Träbert E 1998Phys. Rev.A 313497
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