J. Phys. B: At. Mol. Opt. PhyS32 (1999) 5805-5823. Printed in the UK PIl: S0953-4075(99)06843-1

Breit—Pauli energy levels, lifetimes, and transition data:
beryllium-like spectra

Georgio Tachiev and C Froese Fischer
Department of Computer Science, Vanderbilt University, Box 1679B, Nashville, TN 37235, USA

Received 11 August 1999, in final form 22 October 1999

Abstract. Breit—Pauli results for energy levels, lifetimes, and some transition data are reported
for all levels of the 2%, 2s2p, 2B, 2s3s, 2s3p, and 2s3d configurations of the Be-like spectrum
for 4 < Z < 12. A simultaneous optimization scheme was applied so that a radial basis could
be determined for a set of terms that mix in the Breit—Pauli approximation. Convergence of the
LS line strength is used as a factor in estimating accuracy as well as the agreement of energy levels
and their splitting between theory and experiment. The results are evaluated by comparison with
other theoretical results and experiment for transition rates.

1. Introduction

Atomic spectroscopic data are essential to many astrophysical studies. Seaton[1], in describing
atomic data needed for the calculation of radiative accelerations and diffusion in Mn and HgMn
stars, mentioned a need for some 30° f-values. The Opacity Project [2] was undertaken

to produce these huge amounts of data inZlSeapproximation using close-coupling theory

and theR-matrix method. But even in light atoms, the mixing of terms can be important as in
the 2p3p* PP—2p3c P? transitions which are the primary decays of the Bowen fluorescence
mechanism in Qu [3]. At the same time, intercombination transitions are of great interest

in the study of astrophysical plasmas where they may play an important diagnostic role. The
transition rates of such transitions originate entirely from the mixing of terms through spin—
orbit and other relativistic effects.

In the last decade, tremendous progress has been realized in variational mettadas for
initio calculation of atomic properties [4], including also transition rates [5]. Relativistic
effects can be included either in a full multiconfiguration Dirac—Fock (MCDF) calculation or
through a non-relativistic multiconfiguration Hartree—Fock (MCHF) calculation followed by
a configuration interaction calculation using the Breit—Pauli (BP) Hamiltonian. In the former,
relativistic effects are incorporated fully into the theory but, because of the resulting complexity,
the inclusion of correlation is often limited, particularly in complex systems. The opposite is
true of the MCHF + BP approach: more correlation can be included but the relativistic effects
are treated only to lowest order. These two approaches have been compared extensively for
the 28 1S,-2s2p*P9 transition in Ci [6, 7] and with the most accurate experimental
value [8]. Though both theories are in excellent agreement with experiment, MCHF + BP
was computationally much simpler and observed data could be used to improve the mixing of
terms.

Recently, BP energies and transition rates were reported for the 2s, 2p, 3s, 3p, 3d, and
3s?L terms of the Li-like sequence, 8 Z < 8 [9]. For neutral Li, the uncertainty in the
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transition rates was less than the error of the most accurate experiment. No term mixing was
included. Inthis paper we extend the BP ‘spectrum’ calculations, where all transitions between
levels of a portion of the energy spectrum are computed, to the Be-like states. In anticipation
of more complex cases, like in the F-like sequence where the mixing may include as many
as six terms, a method of simultaneous optimization was developed and is evaluated here for
these simpler, four-electron systems.

2. Computational procedures

The non-relativistic MCHF approach is used for calculating the wavefundtiafi the state
labelledy LS

W(yLS) =) c;P(y;LS), 1)
j

wherey represents the dominant configuration, and any additional quantum numbers required
for uniquely specifying the state are considered. The MCHF wavefunétimmexpanded in
terms of configuration state functions (CSF®)} having the samé& S symmetry but arising

from different electronic configurationg{). The CSFs are built from a basis of one-electron
spin-orbital functions

¢nlm1ms = %Pnl (r)ylm; (97 (P)me (2)

The MCHF procedure [10] consists of optimizing to self-consistdmuth the sets of radial
functions{P, ;,(r)} and mixing coefficientgc;}. Thus the CSFs included in the expansion
determine the radial functions.

In large-scale methods, systematic calculations are performed of increasing size that allow
the monitoring of properties under investigation. In such systematic methods, active sets (ASs)
of orbitals are used to determine the expansion. These are characterized by the largest principal
quantum number. Thus tihe= 3 AS consists of all the orbitald s 2s 2p, 3s 3p, 3d}, though
it should be remembered that for correlation orbitals (orbitals not occupied in the Hartree—Fock
approximation), the principal quantum number is not important spectroscopically, but serves
as a simple index for the orbital of a given symmetry.

Given an active orbital set, rules are used to generate the CSF expansion. In neutral Be,
term mixing is negligible but, at the same time, correlation in the core (which modifies the
potential for the outer electrons) is more important. For this reason, the rules for generating
expansions for states in Be were different from those of the ions.

The rules for obtaining expansions are often expressed in terms of a number of
excitations—singles (S), doubles (D), etc. However, in order to allow for the near-degeneracy
of the 2s and 2p orbitals at high#t, it is convenient to express the rule in terms of the set of
possible principal quantum numbers. To curb the rate of growth of the expansions with the
orbital set size, it may be convenient to define the CSFs set as the union of sets. In this paper,
the sets used were the following:

atom: {1,241,2,3}{2,3,...,n <5°U181,2,342,3,...,n < 82U1{2 3,...,n)°

ion: 191,2,3}{2,3,...,n < 92U 1s{2,3,4,...,n)%

In other words, in the first set for the atom, the first electron has a principal guantum number of
n = lorn = 2; the second has a principal quantum numberin the rargd, 2, 3, and the last

two electrons are unrestricted, but with< 5. Notice that this rule allows double excitations

from 1€ and hence includes core correlation. The CSFs with one 1s orbital represent core
polarization, and those with 1are part of valence correlation. For the ions, core correlation
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was neglected so that the computational size could be constrained. In all cases fioithe
1s orbital was fixed being obtained from an expansion over the $g, B3 and all orbitals
were varied. Also, all expansions were restricted £06 ori-orbitals.

Once a set of radial orbitals has been obtained, the relativistic corrections can be taken
into account within the BP approximation by diagonalizing the BP Hamiltonian [10] to get the
intermediate coupling wavefunctions

Wyd) = ¢;(LS)D(y;LSJ). (3)
LS j

Thus the expansion is now the sum of expansions over a set of terms. For all expansions, the
iterative Davidson method [11] was used to determine a few of the lowest eigenvalues and
eigenvectors [12].

All the results in this paper, unless specifically stated as beifigesults, are based on
the diagonalization of the BP Hamiltonian in which the orbit—orbit term has been omitted.
This operator does not contribute to the mixing of terms, and behaves like a small correlation
correction. Experiments in Li-like spectra [9] have shown that inclusion of orbit—orbit can
double the computation times for generating the BP interaction matrix, yet have negligible
effect at the present level of accuracy. For this reason, it has been omitted, as is common
practice. In the rest of the paper, we will refer to our results as MCHF results, and only use
MCHF + BP for emphasis, when needed.

The weighted oscillator strengthgf are calculated using the length and velocity
formalisms

8 fiik) = SAE; [ (W] Y r;lW)f? 4)
J

f (ik _2. 1 v, VW) |2 5

gi ful )—§AEUI< ,||; W) (5)

to monitor the expected convergence between the two forms with the improvement of the
wavefunctiony; of the lower state andl, of the upper state, and of the corresponding transition
energyAE;;. In these equationg; is the degeneracy factor, i.g. = (2L; + 1)(2S; + 1) for
LS-coupled wavefunctions ang = (2J; +1) for BP wavefunctions. In the BP approximation,
the above length form is correct to(&) (except for the omission of orbit—orbit) while the
velocity form requires a relativistic correction to the gradient operator [13]. For this reason,
it is customary to report both length and velocity results forghcalculation, but only the
length form in the BP calculation.

No orthonormality constraints are imposedtweenthe two sets of radial functions
spanning the two total wavefunctiong and ¥, allowing aseparateMCHF optimization
of the two states involved. The details of the bi-orthonormal transformation algorithm used
for dealing with the resulting non-orthogonality problems can be found elsewhere [14].

3. Optimization strategies

The usual MCHF variational optimization method for a given term, produces term-dependent
orbitals. The BP code, however, requires that the orbitals for each term be the same. When
only two terms are mixed, the (n + 1) scheme [10] works well where orbitals are optimized
systematically for a primary term and then an extra ‘layer’ of orbitals is optimized on the
secondary term. When many terms are present, this scheme becomes unmanageable if extended
toan@,n+1,...,n+m— 1) procedure for the mixing of terms. Simplifying assumptions

could be made using a cross-optimization scheme [15], but these tend to be somewhat arbitrary.
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Table 1. Optimization strategies for groups of terms and thieimlues.

States Terms

28215, 28215, 27 3p
2p?3Py12,1D2, 1% 2p?%P,1D, 1S

2538'S, 35, 2s3¢'S,3S and 28 %P
2s3d'Dy, ®D123 2s3d!D, 3D and 2§ 1D, 3P
2s2p'P3, 3P 4 , 2s2ptP°, 3p°

2s3pPY, 3P, 2s3ptP°, 3PP

The MCHF optimization is based on an energy functional for a givSrterm. In this
work, we have extended the code to simultaneous optimization of a weighted average of energy
functionals of one or more terms, where the weights can be user defined. At the same time,
it is also possible to optimize on one or more eigenvalues of a given term, again with user
defined weights, though the weights for all the eigenvalues of a specific term were assumed
to be the same. Suppo§é€T;) represents an energy functional for teffrand eigenvalue,
assuming orbitals and also wavefunctions are normalized. Then optimization was performed
on the functional

E=Y wr &)/ Y wr,
T; T;

wherewsy, is the weight forT;.

The different states of the Be-like ions were grouped together and a radial basis determined
forasetofterms and/or eigenvalues that were deemed to be important for the relativistic effects,
as shown in table 1. All had equal weights. Thus 2dB3gl 3D » 5 states were computed from
a mixing of three terms?D, D and®P, but two lowest eigenvalues from thB expansion
were included in the expression of the energy functional for optimization of orbitals, along
with the lowest fron?D, and the lowest fromP. A question arises as to how the 1s orbitals
are to be determined. Since the mixing of 3By with 25> 1S, is rather small, even for our
highestZ, it was found that a better spectrum was obtained if the 1s orbital was obtained
from ann = 3 expansion ovelS only. In all other cases, the 1s orbital was determined from
simultaneous optimization at thhe= 3 level of all the terms as indicated in table 1. After that,
for expansions witlh < 5, all orbitals except 1s were varied; foe= 6, all but 1s 2s, 2p were
varied and, in the case of 2s3p and 2s3d, all buRd<p, 3s 3p, 3d. Forn = 7 andn = 8,
the last 20 orbitals were varied except for the- 7 calculations for 2s3p and 2s3d where the
number was 18. For = 9, 10, only the new orbitals were varied, all others being kept fixed.

The neutral atom was treated somewhat differently. As already mentioned, core correlation
is more important here and was included in the model. At the same time, the only term mixing
included in the calculations was the singlet-triplet mixing of 2s2p and 2s3p.

4. Evaluation of the simultaneous optimization process

In a non-relativistic, independent optimization process, convergence of the transition energy
and the agreement of the length and velocity forms of the line strength can be used as indicators
of accuracy. The transition energies themselves may differ from observed transition energies
because of omitted correlation and relativistic effects. In table 2, the non-relativistic transition
energies and line strengths (length and velocity form) for simultaneous and independent
optimization are compared for transitions iniBThis table shows that, for expansions up

ton = 10, the orbital bases from the two methods yield results which generally differ by less
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Table 2. Convergence of th& S line strengthS for simultaneous and independent optimization

in B . §; is the length form and, the velocity form. The notation E ¢—)n denotesx10".

The results from simultaneous optimization appear above those for independent optimization. The
difference (in %) is relative to the average$fands, .

Transition E (cm™1) S; Sy Difference (%)

282152520 P° 7344570 4.4794E+00  4.4837E+00 0.0959
73447.14 4.4793E+00  4.484 1E+00 0.1071
282 152530 P° 14414515 2.4850E01 2.4852E-01 —0.0072
14414656 2.4860E01 2.4861E-01 —0.0048
2s2p°P°-2s3PD  113349.86 1.2446E+01  1.2416E+01 0.2413
113349.83 1.2423E+01  1.2416E+01 0.056 4
252p° P27 3P 6171152 1.6455E+01  1.6402E+01 0.3226
61706.14 1.6456E+01  1.6403E+01 0.3226
252p°P°—2s3s’S 9242825 2.0521E+00  2.037 4E+00 0.7189
92427.81 2.0462E+00  2.038 4E+00 0.3819
252pP°-2(7 1D 29076.81 5.5051E+00  5.449 3E+00 1.0188
29076.70 5.5047E+00  5.448 3E+00 1.0299
2s2ptP°—2s3d'D  81303.55 6.2676E+00  6.284 9E+00 —0.2756
81303.57 6.2663E+00 6.284 8E+00 —0.2948
252pPP-2(7 1S 54378.01 4.1025E+00  4.102 3E+00 0.0049
54377.92 4.1021E+00  4.1025E+00 —0.0098
252ptP°—2s34'S 64260.02 2.6510E03 2.2252E03 17.4644
64259.69 2.6576E03 2.2122E-03 18.2923
2p? 3p-2s3pP° 44957.20 2.6518E03 2.3769E-03  10.9332
44962.58 2.6314E03 2.3996E-03 9.2149
2p? 'D-2s3p'F° 41622.65 1.5377E+00 1.567 1E+00 —1.8938
41622.71 15385E+00 1.5667E+00 —1.8163
2535°S-2s3p PP 1424091 6.1428E+01  6.117 0E+01 0.4209
1424047 6.1439E+01  6.1194E+01 0.3996
2p? 15253 PP 16321.45 3.9933E+00  3.977 7E+00 0.3914
16321.49 3.9939E+00  3.9809E+00 0.3260
253stS-2s3gP° 6439.44 1.5227E+01  1.5332E+01 —0.6872
6439.72 1.5227E+01  1.5330E+01 —0.6741
2s3p'P°—2s3d!D  10604.09 4.3306E+01  4.3131E+01 0.4049
10604.16 4.3309E+01  4.312 7E+01 0.4211
253p°P°-253d°D 6081.13 1.1937E+02 1.1963E+02 —0.2176
6081.11 1.1933E+02 1.1969E+02 —0.3012

than 0.1%. An exception is the length form of the 232p-2s3cfD and 2s2pP°-2s3s’S

where trends show the velocity form to be the more stable and so the differences from the
two models are somewhat larger, but still less than 0.4%. Others are the two transitions,
2s2p'tP°—2s38'S and 2P 3P-2s3pP°, where the line strength is exceedingly small. Except
when the line strength is small, the difference in length and velocity forms themselves are
generally less than 1%, though there is variation.

For the neutral atom, or ions with low degrees of ionization, term dependence can be
expected to be larger. Intuitively, independent optimization should produce accurate transition
data with a smaller basis. This is shown in figure 1 for 2Pp-217 3P and 2s2pP°—2s3fD
transitions in Bi. Here it is seen that independent optimization (lighter lines) converges faster,
has the smoother convergence trend, particularly atdpand that for these two transitions
the two optimization schemes converge to about the same length or velocity line strength at
n = 10. For the former transition, because of the large scale, length and velocity appear not to
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Figure 1. Comparison of convergence of the line strength for independent (light curves) and
simultaneous (dark curves) optimizatia$): solid curves;S,: dashed curves.

be in good agreement, although, in fact, the difference is only 0.32%. The second transition is
somewhat different. The 2s3® has a strong interaction with 2fD. At the Hartree—Fock

level the latter lies above the 2s¥4d [16] and a few layers of correlation orbitals are needed to
obtainthe correct spectrum. Similar problems do not exist for theI33thte and independent
optimization converges rapidly. When optimizing simultaneously’hgtate can be expected

to have a different convergence pattern since the orbitals now also need to representtBe 2s3d
state. Itis interesting to note that the velocity form for the two optimization schemes converges
more rapidly than the length form. This probably is related to the emphasis on the inner region
for the velocity form: independent and simultaneous optimization can be expected to differ
more in the outer regions. For many transitions, like Z82p2p? 3P, theLS trends have
converged already at = 8, but for others such as 2s¥P-2s3dD or 2s2p'P°—2s3s'S°,

where the line strength is extremely small due to cancellation (see table 2) the larger basis was
needed.

5. Breit—Pauli results

The orbital basis from simultaneous optimization may be used to deterfmaependent
energy levels and transition rates. In table 3 we report the lifetimes of all the levels of the
configurations considered in this work. These are based primarily on the allowed E1 transitions
between the different states but the M2 transitions,'8s-2s2p’P3, were also computed as

well as the E2 and M1 transitions, 25§ ,—2s2p°P3, which contribute to the lifetime of

the latter. In other cases, the contributions from these forbidden transitions to the lifetime
are negligible but calculations were also performed for ’2@39 ,—252p'P3. A complete set

of transition data (transition energies, line strength, oscillator strengths, transition rates) is
available at http://www.vuse.vanderbilt.echeff/mchf_ collection. This site also reporisS
convergence trends, including the length and velocity forms of the line strength, which we will
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Table 4. Comparison of computed spectrum forv@vith tabulated NIST [37] data.

Level (cn?) Splitting (cnm 1)
Configuration Term J Theory Observation Difference Theory Observation Difference
2s52p SP° 0 8198555 819425 43.05
1 82122.69 82078.6 44.09 137.14 136.1 1.04
2 82429.97 82385.3 44.67 444.20 442.80 0.58
1po 1 158933.17 158797.7 135.47
2p? 3p 0 213794.44 2134625 331.94
1 213951.36 213618.2 333.16 156.92 155.7 1.22
2 214220.31 213887.0 333.31 425.87 4245 0.15
ip 2 23211996 2317214 398.56
S 0 288434.36 287910.3 524.06
2s3s 3s 1 547153.70 546972.7 181.00
1s 0 561500.34 561276.4 223.94
2s3p 1po 1 581027.89 580824.9 202.99
3po 0 582986.32 582806.4 179.92
1 583023.21 582843.1 180.11 36.89 36.7 0.19
2 583100.70 582920.3 180.40 114.38 1139 0.29
2s3d 3D 1 600964.57 600748.9 215.67
2 600974.73 600758.9 215.83 10.16 10.0 0.16
3 600994.61 600779.2 215.41 30.04 30.3 —-0.42
1D 2 612856.04 612615.6 240.44

show in the next section can be used in the estimation of accuracy. All other reported data are
based on BP line strengths in the length form. For each atom or ion, an ASCII file may be
viewed or downloaded that contains all the information about the transitions in floating point
form, suitable for processing.

6. Accuracy of Breit—Pauli energies

The accuracy of computed oscillator strengths and transition rates depends not only on the line
strength but also on the transition energies. The latter can often be measured more accurately
than computed, and computed transition data can be improved through scaling so that, in effect,
the observed transition energy is used. However, for the production of large amounts of data
this is not practical since, particularly for more highly ionized systems, the data may not be
available. Our aim in this paper is to predict transitions to within a fraction of a per cent. This,
of course, is more easily achieved when the transition energy is large than when it is small.

Table 4 compares the computed spectrum with observationfon@ere both correlation
and relativistic effects are important. The difference in the excitation energies (theory—
observed) appears to be largest for thé 2pnfiguration, possibly because of the neglect
of core correlation. In all other cases, the difference is a few 100'cnThe splitting is
reported too. Itis defined here to be the energy with respect to the lowest level of the multiplet
so that this value for the highest level gives the spread of the multiplet. The latter is a useful
measure of the adequacy of the BP approximation, as will be described in the next section.
All the theoretical energies and splittings were computed from variational total energies with
somewhat more precision than displayed in this table.

As an example of some of the data available at the internet site, table 5 shows a portion of
the E1 line list and associated data. Omitted are some of the intercombination lines with small
transition rates. This is fullgb initio data.
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Table 5. A portion of the computed line list data for'O Omitted are some of the intercombination
lines with small transition rates. The notation & fenotes<10".

Multiplet J-Jx E(@m?l) s sf A 571
2s3p°P3-2s3fD  2-1 17863.87 0.1059 0.00575 4.076 74E+05
2-2 17874.03 15892 0.08628 3.677 42E+06
2-3 1789391 89071 0.48413 1.47713E+07
1-1 17941.36 15879 0.08654 6.19351E+06
1-2 1795152 4.7660 0.25988 1.117 25E+07
0-1 1797825 21191 0.11573 8.31668E+06
2s3stS-2s3gF°  0-1 19527.56 3.6217 0.21483 1.82140E+07
2s3p'P-2s3dD  1-2 31828.15 6.8980 0.66689 9.01263E+07
2538°S-2s3pP°  1-0 35832.62 1.4791 0.16099 1.37880E+08
1-1 35869.51 4.4347 0.48318 1.38223E+08
1-2 35947.00 7.3988 0.80789 1.39267E+08
2s2ptPP—2¢ 1D 1-2 73186.79 2.1185 0.47096 3.36528E+08
28 15-252pP° 0-1 82122.69 0.0000 0.00000 2.28754E+03
252p'PP-2(7 1S 1-0 129501.18 0.8708 0.34254 3.83183E+09
252p°P°-2(7 3P 2-1 131521.39 0.5966 0.23835 9.16709E+08
1-0 131671.75 0.4773 0.19089 2.20752E+09
2-2 131790.35 1.7900 0.71656 1.66032E+09
1-1 131828.68 0.3580 0.14335 5.539 18E+08
0-1 131965.82 0.4773 0.19134 7.408 97E+08
1-2 132097.63 0.5968 0.23946 5.57427E+08
28 15252 P° 0-1 158933.17 1.0598 0.51163 2.87347E+09
2p?15-2s3gP°  0-1 292593.54 0.0057 0.00505 9.62003E+07

2p? 1D-2s3p' P 2-1 348907.93 0.0728 0.07721 2.089 78E+09
202 ID-2s3p°P°  2-1 350903.25 0.0001 0.00007 1.82703E+06

2-2 350980.74 0.0000 0.00000 3.307 98E+03
2p? 3P-2s3pP° 2-1 368802.90 0.0007 0.00079 2.39761E+07

2-2 368880.39 0.0022 0.00246 4.46497E+07
1-0 369034.96 0.0006 0.00064 5.79140E+07
1-1 369071.85 0.0004 0.00048 1.46217E+07
1-2 369149.34 0.0007 0.00083 1.50201E+07
0-1 369228.78 0.0006 0.00065 1.96236E+07
2s2ptPP-2s3dS  1-0 402567.17 0.0432 0.05277 5.70430E+09
2s2ptP°—2s3d'D  1-2 45392287 1.1317 156046 4.28932E+10
252p°P°-2s38S  2-1 464723.74 0.1510 0.21321 1.02382E+10
1-1 465031.02 0.0904 0.12763 6.136 79E+09
0-1 465168.16 0.0301 0.04250 2.044 49E+09
252p°P°-2s3d*D  2-1 518534.60 0.0203 0.03201 1.91376E+09
2-2 518544.77 0.3048 0.48010 1.72217E+10
2-3 518564.64 1.7061 2.68743 6.88631E+10
1-1 518841.88 0.3046 0.47999 2.87290E+10

1-2 518852.05 0.9134 1.43960 5.17015E+10
0-1 518979.02 0.4059 0.63987 3.83187E+10
28152530 F° 0-1 581027.90 0.2263 0.39955 2.99910E+10
28 15-2s3pF° 0-1 583132.64 0.0001 0.00026 1.98890E+07

The errors (in %) for all the excitation energies are reported in table 6. All are well below
the 1% level. This, however, does not guarantee a similar accuracy for all transition energies.
In table 7 are reported, first the difference in the length and velocity form of the line strength
(in % with respect to the averad#, + S,)/2) of the LS calculation and then the error (in %)
in the transition energy from the BP calculation.
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Table 6. Excitation energy differences (in %) from NIST tabulated data [33] unless indicated

2s3p°P° 0.11 0.04 0.03 0.03 0.03 0.03 0.04
0.11 004 003 0.03 0.03 004 0.04
0.11 0.05 0.03 0.03 0.03 0.04 0.04
0.18 0.06 0.05 0.04 0.04 0.04 004 0.05 0.06
0.18 0.06 005 0.04 004 004 0.04 005 0.06
0.18 0.06 0.05 0.04 0.04 0.04 0.04 0.05 0.06

009 006 005 0.04 0.04 004 004 005 0.06

253D

otherwise.
V4

Term J 4 5 6 7 8 <2 107 11 12
232p3P° 0 054 0.08 005 004 005 012 0.17 0.29 0.6

1 054 009 005 0.04 005 012 017 029 046

2 0.54 0.09 005 004 005 0.12 0.17 0.29 0.46
252p1P° 1 0.34 0.11 009 008 0.08 010 0.14 0.20 0.30
2p23P 0 0.16 022 017 015 0.15 0.19 024 035 051

1 016 022 017 045 0.16 019 024 035 0.1

2 0.16 0.22 0.17 015 0.16 019 0.24 035 0.1
Zp2 1p 2 0.11 023 018 017 0.17 020 0.24 036 051
2p2 13 0 0.18 020 0.18 0.18 0.19 0.24 031 043
2s3s°S 1 0.00 002 003 003 0.03 0.04 0.04 o0.07 0.09
2s3sts 0 0.19 010 004 004 0.04 005 0.04 0.06 0.09
2s3p!P° 1 0.08 004 0.04 004 0.04 004 004 005 0.07

0

1

2

1

2

3

2

2s3dD

a From Kelly [17].

7. Recommended values and estimates of accuracy

Theoretical transition rates can be improved by scaling to the observed transition energy. Let
t (for transition) be defined as

t = AEops/ AEth. (6)
Then, for allowed transitions, the recommendedmalizedg /' value is
gf(norm) =1 x gfi(th) (7)

whereg f;(th) is the computed length value that correctly includes relativistic effects of lowest
order. In this work, the relativistic effects on allowed transitions are not large. If we assume
that the error is due primarily to the neglected correlation, then we propose an uncertainty
estimate that is based, in part, on the difference in the two forms df $Hee strength. But
agreement in length and velocity is a necessary, though not sufficient, condition for accuracy:
the transition energy also needs to be correct. cLis the relative discrepancy in the length
and velocity forms of the.S average line strength, anrdbe the relative error in théSJ
transition energy: namely,

c=2|8 —Sl/(S +S) and e = |AEn — AEqgpd/AEqps 8)

Then we propose an uncertainty estimat&wof ¢)gf (norm). In some earlier work [18] on
allowed transitions, using non-relativistic line strength but scaling for the transition energy,
the formula(1.5¢ + 0.1e)g f (norm) was proposed. We will evaluate these hypotheses in the
next section.

For intercombination lines, whergf values are extremely small, transition rates are
usually reported rather than oscillator strengths. These depend on the mixing of terms, which,
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Table 7. Accuracy indicators for allowed transitions. The first line shows the differences between
S, ands; (in %) and the second line the differences (in %) between computed BP transition energies
and transition energies from NIST data (average for each term).

V4
Transition 4 5 6 7 8 9 10 11 12
282 152520 P° 018 -0.09 -011 -0.12 -012 -0.11 -0.11 -0.10 -0.10
0.34 0.08 0.05 0.04 0.04 0.04 0.05 0.06 0.09
28152530 F° 0.15 0.09 0.02 0.02 0.03 0.03 0.03 0.03 0.03
0.08 0.13 0.04 0.04 0.04 0.04 0.04 0.05 0.07
252p°P°—2s3d*D 2.76 0.24 0.12 0.08 0.05 0.04 0.04 0.03-0.03
—0.02 0.05 0.05 0.04 0.03 0.03 0.02 0.03 0.02
2s2p3P°—2p7 3P —0.09 0.32 0.31 0.30 0.28 0.26 0.21 0.22 0.21
—0.06 0.31 0.26 0.23 0.22 0.24 0.28 0.39 0.55
252p°P°—2s38’S 2.61 0.72 0.50 0.35 0.31 0.25 0.22 0.20 0.17
—0.40 -0.002 0.02 0.09 0.03 0.03 0.03 0.04 0.05
2s2ptPP—2p? 1D —128 1.02 0.95 0.86 0.78 0.71 0.65 0.60 0.56
—0.57 0.53 0.42 0.37 0.37 0.40 0.46 0.67 0.93
2s2p'P°—2s3d'D —-4.55 -0.28 -0.17 -0.13 -0.10 -0.08 -0.07 -0.06 —0.05
—0.40 0.01 0.03 0.02 0.02 0.02 0.01 0.02 0.01
2s2ptPP-2p2 1S — 0.05 0.16 0.19 0.19 0.19 0.18 0.17 0.16
— 0.27 0.33 0 .31 0.30 0.31 0.36 0.45 0.58
2s2plP-2s38S  —3.77 1746 —-095 —-085 -0.70 —0.60 —052 -0.47 —0.44
0.31 3.25 0.01 0.01 0.02 0.03 0.02 0.03 0.04
212 3P—2s3pF° —199 10.93 0.17 -053 -044 —-027 -0.22 -0.19 -0.17

357 -035 -013 -0.06 -0.04 -0.04 -0.05 — —

2p? ID-2s3p'P°  -6.00 -1.89 226 —-226 -178 —-161 -145 -1.34 -1.25
-055 -0.43 -0.16 -0.08 -0.06 -005 —0.06 -0.07 -0.08

253s3S-2s3pP° 1.78 0.42 029 —0.19 0.12 0.11 0.16 0.15 0.11
1.01 0.26 0.08 0.05 -0.01 -0.11 -013 — —

2p? 15-2s3gP° — 039 -0.28 0.02 0.06 0.04 —0.05 0.04 0.05
— -1.06 -0.33 -0.17 -011 -0.09 -0.09 -0.09 -0.10

2s3slS-2s3gP° 225 -069 030 037 -043 -032 -024 -019 -0.19
-1.13 -0.78 -0.01 0.07 -0.06 -0.20 -0.28 -0.42 -0.67

2s3ptP°-2s3d'D  —0.23 0.40 0.36 0.43 0.21 0.21 0.19 0.19 0.18
0.28 0.33 0.22 0.15 0.09 0.07 0.05 0.03-0.26

2s3p°P°—2s3d°D 590 -0.22 -0.43 -035 -029 -0.27 -0.24 -0.23 -0.22
1.38 0.30 0.38 0.28 0.19 0.13 0.08 — —

in turn, depend on the separation of these terms. As first shown by Fletrahid 9], by using

the observed term energy separation, the theoretical transition rates can be improved. Usually,
only one term is an important player. For example, in th%e18§—291p3P‘f transitions, the
important mixing is between the terms ofi@sand, to first order, the mixing is proportional

to the square of the inverse of the term separation s [(&tr separation) be defined as

s = AEops(*P}-2P3) / A En(*PY—2F%) 9
then a normalized transition rate is
A(norm) = r3A(th)/s2. (10)

The uncertainty is now based on two factors, the uncertainty in the line strength of the primary
‘allowed’ transition and the uncertainty in the relativistic (BP) mixing of terms. It was further
suggested by Flemingt al [19] and Hibbert [20] that the latter was related to the spread in the
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fine-structure. Let (for relativistic) be defined as

r= AEobs(SPg_gpg)/AEth(3P(2)_3P8)- (11)
Then a ‘fine-tuned’ value is
A(fine) = r2A(norm). (12)

When core correlation is omitted, as in this paper for all but,Behas been shown [7] that
A(fine) is in good agreement with experiment and is our recommended value. For converged
results, we propose the uncertaintydnsayA A, as

AA = |A(fine) — A(norm)| + (|c| + |e]) A(norm). (13)

This scheme is similar to the one recommended by Beagé[21] for the estimation of errors
in Be-like intercombination lines where, in effect, the error in the transition energyas
ignored.

For the forbidden transitions, Flemired al [22] propose a similar scheme. To obtain
recommended values, we first scale to the observed transition energy. In general, transition
rates scale as

A(scaled = 1?*1A(th) (14)

whereir = 1 for E1 and M1 transitions and = 2 for E2 and M2 transitions. Then, if

the transition depends on mixing, similar factors need to be considered as in the case of
intercombination lines. In the present case, such mixing is negligible and the only adjustments
are scaling to the observed transition energy. In the next section we apply some of these ideas
when comparing present work with other theories, experiment, or semi-empirical experimental
predictions obtained from smoothing of experimental data.

8. Comparison with previous results, experiment, and semi-empirical evaluations

Some of the transitions included in this work have been benchmark calculations for the
MCHF + BP method. In all of these, core correlation was included and present results will not
be quite as accurate. Many comparisons can be found in earlier publications without particular
concern about relativistic effects. A method much like MCHF +BP that also diagonalizes a BP
Hamiltonian is CIV3 [19, 20] except that orbitals are analytic and are optimized in a carefully
selected manner as determined by the problem. When relativistic effects are expected to
be small, non-relativistic MCHF calculations, denoted MCHF(nr), may be used for the line
strength along with observed transition energies in the oscillator strength calculation [18].
For Be, full core plus correlation (FCPC) results are similar in that relativistic effects are not
included in the calculation of the line strength [28]. Fully relativistic methods include the
MCDF method and relativistic many-body perturbation (RMBPT) methods that also include
the Breit correction. Although the Breit correction in MCDF calculations based on the Dirac—
Coulomb Hamiltonian is not as important in allowed transitions, they are extremely important
in intercombination lines [23].

In table 8, thegf values of the 251S—2s2p'P and 28 1S—2s3p P} transitions are
compared with benchmark calculations, recent results from either theory or experiment, and,
at least for the former transition, two collections of experimental data that have been iso-
electronically smoothed. There is variation in the latter. The Reistad and Martinson iso-
electronically smoothed values [30] used fewer experimental values than those reported in [25]
which included some highef values. The newly reporteglf values for Ba and B [24]
are significantly larger than the ones used by Reistad and Martinson [30] and would change
their smoothed values a lot. Possibly with this new data, their error bars could be reduced. It
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should be mentioned that the validity of the smoothing procedure was already been raised by
Fleminget al [32]. Also included in the table are semi-empirical (SE) values that analyse
the allowed and intercombination transitions simultaneously, deriving a mixing angle for
singlet—triplet mixing. This theory has been applied to both allowed transitions. Relativistic
effects play a minor role in the allowed transitions and so semi-empirical values for the former
transition are generally close to the iso-electronically smoothed experimental values. For the
28 15-2s3p'P; transitions, the line strength is considerably smaller and the singlet-triplet
mixing less readily determined since, in fact, im Bhe two states are almost degenerate, with

3pe slightly lower, and thereafter thé® being the lower state. Thus a smooth mixing angle

is not likely to be valid. Since 2s3p is an excited configuration, branching ratios are needed
before transition rates can be extracted from measured lifetimes. All these difficulties are
reflected in the much larger differences between the SE and present work values for the latter
transition.

Experimental data for 2dS,—2s2p'P{ is available for all these spectra exceptiF
Here we report the NIST tabulations for the oscillator strengths which references indicate
were obtained from theory dating back to 1964 and was given an accuracy rating of ‘E’ for
uncertainties larger than 50%. Forf2§—2s3p'P? far more experimental oscillator strengths
are missing. However, since it is important to be able to compare with the experimental
transition energy as tabulated by NIST, we also include the §lSWalues along with accuracy
classifications.

Not unexpectedly, this paper agrees best with other theories, especially when theories
are normalized to the observed transition energy, a scaling often omitted by theorists. It
is interesting to note the uncertainty estimates which in this case are based entirely on the
discrepancy in length and velocity forms of thé line strength and the error in the transition
energy. For the 28'S—2s2p'P} transitions the uncertainty estimates appear reasonable. In
fact, the normalized values are in near-perfect agreement to four significant digitallvith
normalized MCDF values [6, 23, 25] which is remarkable. The good agreement with the
MCHF(nr) results of dnssonet al [18] is an indication that relativistic effects on the line
strength in the length form are not large. It is noted that the uncertainty estimates of their
results and present work are similar. On the other hand, the errors in their energies are
much larger but the formula used for determining uncertainties included only 10% of the
error in the energy, whereas in this paper we have included 100% of this error in computing
uncertainties. At the same time, the two results are within their uncertainties. Not included
are the Safronovat al [39] RMBPT results which use only a first-order theory for obtaining
coupling coefficients. For Mg, which could be expected to be the most accurate in our range
of Z, their quotedA-rate would convert to g f-value of 0.292, quite a bit smaller than the
experimental and theoretical values included in table 8.

Although comparison with other theories like MCDF fo?éSO—ZSZplP‘l) suggests that
maybe the formula for uncertainties produces uncertainties that are too large, they seem
unreasonably small for 28S,—2s3p'P9. The present values have notincluded core correlation
effects, effects included in the earlier MCHF study, where systematic effects and extrapolation
were included in deriving the uncertainty estimates. The RMBPT results of Safrehava
[38], were expected to be in error by several per cent in this energy range, improvihg as
increases. Although matrix elements were computed to second order, the coupling coefficients
(in jj) were computed only to first order. This is not expected to introduce large errors for the
allowed transition, but they are large enough that no clear decision can be made with regard
to the accuracy of our uncertainty estimates.

In table 9, the transition rates for the 226&-2s2p’P? and 241S5,-2s3p°P%
intercombination lines are compared with benchmark calculations. All MCHF results are fine-
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Table 8. Comparison of adjusted oscillator strengths for the allowet!@s-2s2p'P9 and

28 1Sg—253p1P§ transitions. The present oscillator strengths have been converted to observed
transition energies with uncertainties determined from the discrepancy in the length and velocity
forms of the line strength (see the text). Oscillator strengths from NIST tabulations are followed

by their accuracy rating.

2s2ptP? 2s3ptP?
Element AE (cml) gf Source Ref. AE(cm?l) gf Source Ref.
Bel 42565 1.40(6) Experimeht [24] 60187 — NIST [33]
1.339 Experimerit  [25]
1.3417 SE [26]
42591 1.375(7) MCHF+CIV3 [27]
42749 1.3711 MCHF(nr) [18] 60189  0.00885(5) MCHF [35]
42569 1.374 FCPC [28] 60194 0.00914(1) FCPC [28]
42604 1.375 Mod. Pot. [29] 60226 0.00901 Mod. Pot. [29]
42693 1.3726(21) Present work 60233 0.0090(2) Present work
Bu 73397 0.98(6) Experimeht [24] 144103 — NIST [33]
0.981 Experimerit [25]
0.9701 SE [26] 0.0758 SE [36]
73655 0.9976(22) MCHF(nr) [18]
73592 0.9985 MCD¥ [23]
73530 0.9948(23) MCHF [23] 144099  0.1093(3) MCHF [35]
73483 0.9986(16) Presentwork 144177 0.1084(2) Present work
Cum 102352 0.754(14)  Experimént [30] 258931  0.232(B)  NIST [37]
0.760 Experimerit  [25]
0.7541 SE [26] 0.1979 SE [36]
102 440 0.7579(4) MCDF [6] 259309  0.267 RMBPT [38]
102598 0.7567(20) MCHF(nr) [18]
102 403 0.756 MCHF [3] 258922 0.2414(4) MCHF [35]
102447 0.7575(12) Present work 259035 0.2406(2) Present work
N v 130694 0.620(14)  Experimént [30] 404522 0.327(B) NIST [37]
0.618 Experimerit  [25]
0.6163 SE [26] 0.2858 SE [36]
130830 0.6093(16) MCHF(nr) [18]
131029 0.6102 MCDF [25] 404 654 0.341 RMBPT [38]
130780 0.6090(20) MCHF+CIV3 [31] 404504 0.3338(4) MCHF [35]
130801 0.6100(12) Present work 404 666 0.3331(2) Presentwork
Ov 158798 0.527(14)  Experimént [30] 580525 0.392(B) NIST [37]
0.520 Experimefit  [25] 0.3533 SE [36]
0.5212 SE [26] 580855 0.399 RMBPT [38]
158709 0.5105(14) MCHF(nr) [18]
159154 0.5111 MCDIF [25] 580791 0.4003(5) MCHF [35]
159179 0.511 CIV3 [32]
158933 0.5112(10) Present work 581028 0.3994(3) Present work
Fwi 186 841 0.62(E) NIST [33] 787844  0.478(E)  NIST [33]
0.4517 SE [26] 0.4072 SE [36]
186 366 0.4397(12) MCHF(nr) [18] 787836 0.445 RMBPT [38]
187224 0.4405 MCDIF [25] 787777  0.4500(5) MCHF [35]
187041 0.4405(10) Present work 788140 0.4487(3) Present work
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Table 8. (Continued)

2s2p'F8 2s3ptP?
Element AE (cm™1) gf Source Ref. AE(@m?Y) gf Source Ref.
Nevi 214952 0.395 Experiméht [25] 1025650 0.4489 SE [36]
0.3988 SE [26] 1025610 0.480 RMBPT [38]
213894 0.3867(11) MCHF(nr) [18]
215350 0.3875 MCDF [25] 1025488 0.4884(6) MCHF [35]
215412 0.387 CIvV3 [32]
215260 0.3875(10) Present work 1026 055 0.4862(3) Present work
Nawvii 243208 0.362(17)  Experiment  [34] 1294230 0.537(E)  NIST [33]
0.3573 SE [26] 0.4833 SE [36]
243625 0.3464 MCD¥F [25] 1294180 0.508 RMBPT [38]
243706 0.3464(11) Present work 1294895 0.5147(4) Presentwork
Mg ix 271687 0.319 Experiméeht [25] 1593600 0.508(B)  NIST [33]
0.3239 SE [26] 0.506 6 SE [36]
272133 0.3136 MCDF [25] 1593625 0.528 RMBPT [38]
272178 0.313 CIV3 [32]
272479 0.3136(12) Present work 1594738 0.5351(5) Present work

a Smoothed experimental data.
b Scaled to observed transition energy.

tuned using observed data. For a core—valence calculation, both the fine-structure splitting and
the A-rate are too large and fine-tuning tends to improve the final transition rate [7]. However,
in B i, the observed fine-structure splitting has a rather large uncertainty and accurate studies
which also include correlation in the core suggest a value of 22.19 [7] or 22.2 [44] dm

this case, our reported fine-tunddrate used the former theoretical splitting which yields a
somewhat larger uncertainty.

For the 28 1S,—2s2p*P{ transitions, the present work is in reasonable agreement with the
semi-empirical model which should apply reasonably well. Like the present calculations, the
MCDF values [25] forZ > 7 did not include core correlation yet are consistently somewhat
smaller and outside our uncertainty limits. The latter appear reasonable in that there is
overlap with somewhat more accurate results that include core correlation and also report
uncertainties [21]. For the 28S,—2s3p*P{ transition less data are available for comparision,
but for all but B there is good agreement with the SE transition rates, given the difficulty
of the SE analysis for the decay from this excited state. Not included in this table are the
recently published results of Safronaetaal [38]. For the intercombination line, the coupling
coefficients introduce extensive cancellation into the calculation and first-order coefficients are
not sufficient for reliable data in this range of

Finally, in table 10 we compare some of our transition energy adjusted data for forbidden
transitions (first line of data) with those of Flemirg al [22, 31] based on a similar BP
theory but including some core correlation (second line) and MCDF values [25, 45] (all other
lines) where the former reference is to a core—valence calculation, whereas the latter also
includes correlation with the core, but orbitals were constrained to be the same for both the
initial and final state. Thus the values reported come from a variety of theories with different
approximations. The BP with core correlation might be expected to be the most accurate,
particularly at lowZ, but the orbital set for [22] was an= 5 + 6p orbital set for core—valence
correlation, a basis not particularly well suited for representing correlatiorfinTte MCHF
results of [31] include core correlation from the start and then proceed to-ar8 orbital
set optimizing on the primaryP° term and determining an extra layer for the second&fy
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Table 9. Comparison of present data (energies and adjusted transition rates) for some
intercombination lines with other theory and experiment or the semi-empirical (SE) experimentally
smoothed data. All energy data are from NIST tabulations [33]. The present transition rates are
recommended values obtained from computed data along with uncertainties (see the text). The
uncertainties for transition rates are given in parentheses (in units in the last place). The notation
E +n denotes<10".
Element SPotP 3P93pg AE(eml)  Ap (s Source Ref.
28 15,-252p°F%
B 36057 21.68 37340 10.24(5) Experiment [40]
9.15 SE [36]
36225 22.19 37303 10.27(20) MCHF [7]
36109 22.47 37374 10.15(27) Present work
Cu 49961 80.05 52391 102.94(14) Experiment [8]
102.35 SE [36]
50112 79.72 52357 103.0(4) MCHF [7]
50071 79.64 52375 103.0(6) MCHF [21]
50070 80.05 52370 102.9(1.5) MCDF [6]
50031 80.29 52416 103.66(60) Present work
N v 63422 207.1 67272 625(150) Experiment [41]
583.7 SE [36]
63728 67301 557.8 MCD¥F [25]
63552 206.4 67224 575.1(4) MCHF [21]
63502 207.6 67298 578.4(27) Present work
Ov 76719 442.8 82079 2.0(4)E+03 Experiment [41]
2332 SE [36]
77050 82104 2210 MCD¥F [25]
76719 442.8 82001 2260(11) MCHF [21]
77144 440.4 82035 2256.6 CIvV3 [22]
76810 444.42 82123 2276(16) Present work
Ne i 103242 1449. 111705 2.2(11)E+04 Experiment [42]
19953 SE [36]
103620 111730 18608 MCDF [25]
103704 14425 11708 19040.4 CIvV3 [22]
103660 1452.41 111896 19236(140) Present work
28 15,-2s3p°P%
B 113 4.74 143490 1.0E+05 SE [36]
126 4.68 144189 2.7(6)E+05 MCHF [43]
127 4.67 144053 2.9981(39)E+05 Present work
C —780 18.75 259711 4.0E+05 SE [36]
—769 18.82 259818 5.0(2)E+05 MCHF [43]
—764 18.82 259799 4.9705(62)E+05 Present work
N v —1465 51.2 405988 2.8E+06 SE [36]
—1451 51.59 406131 3.2(1)E+06 MCHF [43]
—1471 51.66 406113 3.1937(36)E+06 Present work
Ov —-2015 113.9 582840 1.9E+07 SE [36]
—2002 114.34 583041 1.96(4)E+07 MCHF [43]
—1995 114.38 583023 1.9404(23)E+07 Present work
Fwv —2468 220. 790316 1.0E+08 SE [36]
—2457 221.06 790610 9.89(9)E+07 MCHF [43]
—2449 221.10 790589 9.7608(130)E+07 Present work
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Table 9. (Continued)
Element Spo-1p2 3Po-3m8 AE (cm™1) A (7Y Source Ref.
Newvi —-2839 388.2 1028499 4.18E+08 SE [36]
—-2838 388.37 1028917 4.15(4)E+08 MCHF [43]
-2829 388.51 1028884 4.1578(57)E+08 Present work

@ Fine-tuned using an accurate theoretical value of the term splitting [7].
b Scaled to observed transition energy.

Table 10. Comparison of present transition energy adjusted M1, E2, and M2 transition rates (in
s~1) from 2s2p*P° with other theories. For each transition, the first line is present work, the
second from other BP calculations, and the remaining from MCDF calculations, scaled to observed
energies. The notation E(+)n denotes<10".

Z=5 Z=6 Z=1 Z=28 Z=10 Z=12

A [Ref] Axi [Ref] Axi [Ref] Axi [Ref] Axi [Ref] Ak [Ref]

3P(1’—3P‘2’M1

5.795E-08 2.446E-06 4.070E-05 3.907E-04 1.333E-02 2.024E-01

526E-08 [22] 2.33E-06 [22] 4.026E05® [31] 3.80E-04 [22] 1.30E-02 [22] 1.96E-01 [22]
2.586E-06 [45] 4.118E-05 [45] 3.921E-04 [45]

3P8_3P2M1

4.281E-09 2.378E-07 4.496E-06 4.631E-05 1.682E-03 2.568E-02

3.80E-09 [22] 2.27E-07 [22] 4.516E-06% [31] 4.62E-05 [22] 1.73E-03 [22] 2.77E-02 [22]

SP-PSE2

9.276E-16 1.482E-13 6.481E-12 1.335E-10 1.473E-08 5.437E-07

793E-16 [22] 1.37E-13 [22] 6.415E-12 [31] 1.23E-10 [22] 1.44E-08 [22] 5.41E-07 [22]
1.344E-13 [45] 6.203E-12 [45] 1.308E-10 [45]

Spo3pYE2

4.152E-16 5.823E-14 2.389E-12 4.748E-11 5.072E-09 1.868E-07

358E-16 [22] 5.37E-14 [22] 450E-11 [22] 4.81E-09 [22] 1.756-07 [22]
6.388E-14 [45] 2.435E-12 [45] 4.765E 11 [45]

1s5-3Po M2

1.718E-03 5.203E-03 1.156E-02 2.167E-02 5.769E-02 1.253E-01

172E-03 [22] 5.15E-03 [22] 1.144E-02 [31] 2.16E-02 [22] 5.77E-02 [22] 1.25E-01 [22]

1.698E-03° 5.139E-03 [6] 1.151E-02 [25] 2.154E-02 [25] 5.745E-02 [25] 1.247E-01 [25]
5.130E-03 [45] 1.143E-02 [45] 2.151E-02 [45]

a8 MCHF results.

b MCDF calculation including core correlation (unpublished).

term. These results, reported only fomN are expected to be the most accurate. et 7,

all the present transition rates agree to about 1% with these valuesi, lin& present values

for M1 and E2 transitions are 10-15% larger than the BP values of [22], but for higher
agreement improves somewhat for M1 and E2 transitions. For the M2 transition, it was found
that for the present core—valence model, the choice of 1s affected the rate more than in any other
transition. The results reported here are based on separate calculatiods 8ansere the 1s

orbital was taken from simultaneous optimization of 253p°. A separate MCDF calculation

was performed for the M2 transition in Balso including core correlation, normalized to

the observed transition energy, which differs from the present work by 1%. Generally, all
theories are in good agreement but the excellent agreement with the MCDF results based on
independent optimization of the initial and final state [25] is reassuring: differences are at the

1% level.
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9. Conclusions

In this paper we present an analysis of the transition data obtained for all transitions between
levels of the Be-like energy spectrum where the most highly excited state i$Rs3fbr

4 < Z < 12. A simultaneous optimization scheme was used in the production of this data so
that BP interactions could determine mixing of terms, removing some of the arbitrary decisions
in other schemes such as the £ + 1) scheme where primary and secondary terms need to be
designated: the choice is not obvious. In this work, it was assumed that the choice of 1s would
not be critical, that a 1s obtained frommag= 3 valence correlation calculation for simultaneous
optimization would provide the needed accuracy. Most transitions were not sensitive (at the
0.5% level) to this choice except for the M2 transitiod 2%—2s2p*P3. In retrospect, when

the mixing from a different configuration is small, it would be more appropriate to determine
the 1s from the state for which a basis is being determined as was done in the present work
only for the ground state.

The present calculations did not include correlation in the core, except fomBere
there is less mixing of terms because of the much smaller relativistic effects. When a similar
scheme is applied to the other first-row sequences, inclusion of core correlation will not be
possible because of the larger size of the expansions that will be generated. Since the Be-like
sequence has been studied so extensively, the present core—valence model could be validated as
has been done here. An attempt has been made to find accuracy measures for transition energy
adjusted data. Although length and velocity forms of fi#eline strength can be expected to
be critical factors, particularly when the transition energy has an error less than 1%, the errors
in the adjusted oscillator strengths (or transition rates) may well be larger than the length and
velocity discrepancy might indicate. For this reason, the error in the BP transition energy
was also suggested as a factor. More accurate estimates require an analysis of trends (length
and velocity may both be decreasing, for example) as well as other factors that depend on the
computational model as was done fof 25,—2s3p'P? [35], for example.

The procedures described here lend themselves to the production of large amounts of data
by fairly automatic schemes. The large BP calculations were performed on the T3E at the
National Energy Research Scientific Computing Center (NERSC) using an MPI version of the
code and employing 32 processors for large cases.
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