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Abstract
Breit–Pauli and Dirac–Hartree–Fock energy levels and transition probabilities
in Ar I are reported for energy levels up to and including 3s23p53d 1Po

1. Through
the use of a simple core-polarization model, the term composition of these
levels was determined. In order to also obtain accurate results for transitions
from the ground state, a more extended correlation model was employed. The
agreement in the length and velocity gauges of transition data and the accuracy
of the predicted transition energy are factors that determine the accuracy of our
results which are compared with experimental and other theoretical data when
available.

1. Introduction

Energy levels and transition probabilities of neutral argon are useful in a variety of
scientific applications. Argon has been employed successfully to determine reactive species
concentrations using optical emission spectroscopy of discharge plasmas [1, 2]. The Ar I
spectrum was also used in an astrophysical study concerning the abundance of elements in a
damped Lyman α system, where the presence of this neutral atom was used to derive metal
abundances consistent with the theory of nucleosynthesis [3]. In research undertaken with the
goal of determining column densities in another damped Lyman α system [4], the absorption
spectrum of neutral argon was found useful. This type of system had been found to greatly
contribute to the neutral gas mass in the early ages of the Universe and the low depletion factor
of argon in the interstellar medium studied was beneficial in this second study of its kind that
measured argon at high redshift [4].

Among the experimental methods that have been used to study oscillator strengths for
3p6 → 3p54s transitions in neutral argon are line-broadening by Copley and Camm [5] and
Vallee et al [6], as well as self-absorption by Westerveld et al [7]. Electron–photon delayed
coincidence was used, among others, by Chornay et al [8] to measure radiative lifetimes of
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3p54s excited states. A study of oscillator strengths for two 3p6 → 3p54s transitions was
performed in 1992 by Federman et al using an experimental beam-foil method [9]. In 1995,
Wu et al [10] employed an electron energy-loss spectrometer to determine absolute oscillator
strengths for a number of transitions, including 3p6 → 3p53d, 4s and 5s. Ligtenberg et al
[11] and Gibson and Risley [12], in turn, reported absolute measurements of optical oscillator
strengths for resonance lines in noble gases, including argon. In a recent study by Savukov
and Berry [13], the ratio of line strengths for the two transitions 3p54s 1Po

1 → 3p54p 3P2

and 3p54s 1Po
1 → 3p54p 3D2 was measured in an argon pulse discharge using a single-mode

Ti:sapphire laser.
Early theoretical studies of oscillator strengths [14, 15–17] include an atomic eigenchannel

calculation of excitation energies and oscillator strengths for several high-lying configurations
undertaken by Lee in 1974 [17]. Oscillator strengths for E1 transitions in the Ar-like
sequence from the ground state to 3p5nd (n = 3, 4) and 4s were investigated by Lin et al
in two ways, namely with the multiconfiguration Hartree–Fock (MCHF) and Dirac–Hartree–
Fock (DHF) methods [18]. In this study, however, orbital expansions were limited. In
1997, a particle–hole model was used by Avgoustoglou and Beck [19] to compute oscillator
strengths in np6 → np5(n + 1)s dipole transitions for several rare gases including argon with
results that agreed reasonably well with both experiment and other theory. More recently,
theoretical energies and transition probabilities were computed by Savukov using a combined
configuration interaction and many-body-perturbation-theory approach [20].

Although accurate transition data in neutral argon is important not only in astronomy and
astrophysics but also in other scientific areas such as plasma physics, there are unfortunately
few investigations of Ar I beyond the resonance lines. Many of the investigations performed in
the past were restricted to transitions from the ground state to the excited states 3p54s, 3p54p
and 3p53d, while transitions between excited states have not been studied by many authors.
In this paper, we report and discuss the results of our calculation of energy levels, transition
probabilities, line and oscillator strengths for neutral argon states up to and including 3p53d 1Po

1,
particularly for transitions between excited states. This study is part of a larger undertaking
to compute all the energy levels in a lower portion of an atomic spectrum for a number of
isoelectronic sequences. Our large-scale investigation is motivated by the need for accurate
transition data in a variety of scientific applications. As a result of computing atomic
transitions, lifetimes can also be presented, which offer another way of comparing our results
with experiment and other theory.

2. Computational methods

The theoretical basis of our computational approach has been widely discussed elsewhere
[21–23]. Two computational procedures were used, namely the MCHF with Breit–Pauli
relativistic corrections and the multiconfiguration Dirac–Hartree–Fock (MCDHF) method.

In both procedures, calculations were performed using an expansion of configuration
state functions (CSFs) derived from an orbital set. To build a CSF expansion, the restrictive
active space method was used to generate CSFs by excitation of orbitals occurring in the
reference set of configurations to a set of orbitals, where an inactive 1s22s22p6 common
core was assumed. In general, the correlation model employed determines how this is done.
The orbital set was increased systematically in order to monitor the convergence of the
calculation. It is convenient to refer to the {1s, 2s, 2p, . . . , 3s, 3p, 3d} set of orbitals as the
n = 3 orbital set, {1s, 2s, 2p, . . . , 4s, 4p, 4d, 4f} as n = 4, etc. Larger orbital sets can result
in a considerable increase of computational time required for the problem, and appropriate
restrictions may be necessary.
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In the MCHF approach, orbitals are determined by optimization of an energy expression
for an LS term. Since these orbitals will be ultimately used in a Breit–Pauli configuration
interaction (CI) calculation involving many LS terms, the MCHF method has been extended
to optimize on a weighted linear combination of energy expressions thereby optimizing
orbitals simultaneously for a group of terms. Radial functions and expansion coefficients
were optimized to self-consistency using the multiconfiguration self-consistent field (MC-
SCF) procedure [24]. The iterative Davidson method [25] was used to determine the desired
eigenvalues and eigenvectors. In this manner, an approximate wavefunction � was determined
for each term γLS of the form

�(γLS) =
∑

j

cj�(γjLS) (1)

where γ usually represents the dominant configuration and any additional quantum numbers
necessary to specify the state uniquely. The configuration state functions (CSFs) were built
from a basis of one-electron spin orbitals,

φnlmlms
= 1

r
Pnl(r)Ylml

(θ, φ)χms
, (2)

where the radial functions Pn(r) were determined by the SCF process.
The above expansions and orbitals were then used in a configuration interaction (CI)

calculation where the interaction matrix was a Breit–Pauli interaction matrix [24]. All
contributors to the Breit–Pauli Hamiltonian were included in the calculation presented here
with the exception of the orbit–orbit interaction term, which does not contribute to interactions
between CSFs from different LS terms. The eigenfunctions of the Breit–Pauli interaction
matrix are the intermediate coupling wavefunctions

�(γ J ) =
∑
LS

∑
j

cj (LSJ )�(γjLSJ ) (3)

where γ represents the configuration and any other quantum numbers required to specify a
state. The expansion coefficients, cj (LSJ ), and the corresponding energy, E(LSJ ), are an
eigenvector and eigenvalue, respectively, of the interaction matrix. It is convenient to think of
the Breit–Pauli interaction matrix as having a block structure, where the diagonal blocks are
the interactions within an LS term, and off-diagonal blocks represent the interaction between
terms. We refer to two LS terms as interacting if, for some value of J , there are non-zero
interactions in the off-diagonal block for the pair of LS terms.

In the MCDHF procedure, the wavefunction � for the state labelled γ J is approximated
by an expansion over jj -coupled CSFs

�(γ J ) =
∑

j

cj�(γjJ ), (4)

where the CSF �(γ J ) are antisymmetrized linear combinations of relativistic orbital products
of the form

φ(r) = 1

r

(
Pnκ(r)χκm(r̂)

iQnκ(r)χ−κm(r̂)

)
. (5)

Here κ is the relativistic angular momentum, Pnκ(r) and Qnκ (r) are the large and small
component radial wavefunctions and χκm(r̂) is the spinor spherical harmonic in the lsj coupling
scheme [22]. After obtaining the set of radial functions, relativistic configuration interaction
calculations were carried out to determine CSF expansion coefficients by diagonalizing
the Hamiltonian matrix that included the frequency-dependent Breit interaction, vacuum
polarization and self-energy correction.
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Table 1. Selected non-relativistic line strengths obtained from the MCHF core-polarization model.
Per cent differences were computed according to the formula [S(l)−S(v)]×100/ max{S(l), S(v)}.
n S(l) S(v) Difference (%) n S(l) S(v) Difference (%)

3p6 1S − 3p54s 1Po 3p54s3Po − 3p54p3D

4 1.627 1.779 −8 4 149.8 164.6 −8
5 1.007 0.714 29 5 138.2 128.8 6
6 0.973 0.640 34 6 133.8 136.3 −1
7 0.976 0.638 34 7 133.5 133.5 0
8 0.967 0.635 34 8 130.0 135.3 −3

3p6 1S − 3p53d1Po 3p54p 3P − 3p53d 3Do

4 3.323 1.067 67 4 249.0 293.5 15
5 0.651 0.328 49 5 230.3 257.3 −10
6 0.459 0.287 37 6 227.0 230.0 −1
7 0.396 0.281 29 7 227.0 232.0 −2
8 0.431 0.278 35 8 228.4 229.6 −1

3. Core-polarization model

Many transitions of interest in Ar I are between excited states where few data are available.
Since the only parent for an outer electron in this atom is 3p5 2P, a simple core-polarization
model was implemented first. In this approach, the wavefunction is an expansion over odd or
even 3s23p4nln′l′ and 3s3p5nln′l′ configuration states, where nl and n′l′ are orbitals from the
orbital set. Since the expansions for the terms are not too long in this model, one set of orbitals
could be optimized for all the even terms and another for all the odd terms. This model had
proved to be very effective for computing 2p4(3P)3p − 2p4(3P)3d transitions in Ne II [22].

In Ar I, only configurations with l � g were included in the expansions and only orbitals
outside the core were varied in calculations which were performed for 3 � n � 7. At the n = 8
level, only 8s and 8p orbitals were added.

As a measure of convergence and accuracy of our calculation, we monitored the length
and velocity forms of the MCHF line strength for orbital sets of increasing size, denoted by n.
In table 1 we present four selected transitions, two from the ground state and two between
excited states. As can be seen from this table, the agreement of the two gauges is better
for transitions between excited states than it is for those involving the ground state. These
examples illustrate the fact that the core-polarization model is not able to accurately compute
the relative energy differences between the ground and excited states. In the case of transitions
between excited states, however, the agreement of the two gauges improves with increasing n.

To check the reliability of our core-polarization results, a similar calculation was
performed using the MCDHF method. Expansions were generated in the same fashion as
in the Breit–Pauli model, but only up to n = 6 and l � g. For odd states, 7s and 7d orbitals
were also included.

Table 2 displays the energy levels computed using our two ab initio models—MCDHF
and Breit–Pauli—as well as differences from experimental values specified in the NIST atomic
spectra database [26]. Both MCDHF and Breit–Pauli energies are shifted upwards significantly
due to the fact that the core-polarization expansion applied to the ground state includes
correlation among the equivalent 3p electrons, correlation omitted in the excited states. This
shift is greater for Breit–Pauli than MCDHF. Thus transition energies for transitions from the
ground state are in error by up to 25% for MCDHF. However, by considering both present
and NIST energy levels relative to 3p54s 3Po

2 the differences are much smaller. For MCDHF
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Table 2. Ar I ab initio energies, energy differences (computed − observed [26]) in cm−1, and term
compositions for states up to and including 3p53d 1Po

1 from core-polarization calculations.

MCDHF Breit–Pauli

Term Level Difference Level Difference Term composition (%)

3p6

1S0 0.00 0.00 0.00 0.00 100 1S1

3p54s
3Po

2 124797.16 31653.40 125732.17 32588.41 100 3Po
2

3Po
1 125403.69 31653.09 126320.54 32569.94 83 3Po

1 17 1Po
1

3Po
0 126177.09 31623.42 127036.75 32483.08 100 3Po

0
1Po

1 127055.98 31656.15 127937.44 32537.61 83 1Po
1 17 3Po

1

3p54p
3S1 136155.10 32053.00 136874.30 32772.20 96 3S1 3 3P1 1 1P1

3D3 137376.33 31913.57 138260.60 32797.84 100 3D3

3D2 137533.65 31916.38 138424.00 32806.73 65 3D2 33 1D2 2 3P2

3D1 137965.96 31878.70 138852.88 32765.62 53 3D1 32 1P1 15 3P1

3P2 138141.78 31904.23 139048.15 32810.60 55 3P2 36 1D2 9 3D2

3P0 138970.18 31915.91 139835.42 32781.15 85 3P0 15 1S0

3P1 139354.12 31857.70 140204.50 32708.08 71 3P1 25 1P1 4 3S1

1P1 138984.97 31853.26 139822.03 32690.32 47 3D1 42 1P1 11 3P1

1D2 139171.76 31882.06 140009.91 32720.21 43 3P2 31 1D2 26 3D2

1S0 140868.80 32146.18 141517.71 32795.09 85 1S0 15 3P0

3p53d
3Po

0 142779.85 31112.08 143731.16 32063.39 100 3Po
0

3Po
1 142950.23 31132.20 143889.68 32071.65 99 3Po

1 1 3Do
1

3Po
2 143309.48 31170.56 144224.45 32085.53 96 3Po

2 2 3Do
2 2 1Do

2
3Fo

4 144417.93 31667.78 145375.82 32625.67 100 3Fo
4

3Fo
3 144702.08 31681.72 145655.97 32635.61 81 3Fo

3 16 1Fo
3 3 3Do

3
3Fo

2 145101.91 31675.95 146041.80 32615.84 70 3Fo
2 19 1Do

2 11 3Do
2

1Fo
3 145471.06 31754.50 146426.64 32710.08 52 1Fo

3 44 3Do
3 4 3Fo

3

3p55s
1Po

1 145643.21 31999.95 146569.82 32926.56 55 1Po
1 45 3Po

1
3Po

2 145455.32 31986.85 146384.48 32916.01 99 3Po
2 1 3Do

2
3Po

0 146833.45 31971.81 147692.68 32831.04 100 3Po
0

3Po
1 146948.35 31973.33 147808.22 32833.20 54 3Po

1 46 1Po
1

3p53d
1Do

2 146315.43 31674.44 147217.77 32576.78 59 1Do
2 29 3Fo

2 12 3Do
2

3Do
1 146034.49 31886.76 146987.76 32840.03 70 3Do

1 29 1Po
1 1 3Po

1
3Do

2 146479.53 31674.39 147390.77 32585.63 74 3Do
2 20 1Do

2 4 3Po
2

3Do
3 146534.90 31712.96 147431.88 32609.94 53 3Do

3 32 1Fo
3 15 3Fo

3
1Po

1 147289.38 31922.51 148188.71 32821.84 70 1Po
1 27 3Do

1 3 3Po
1

the largest positive difference is 493 cm−1 for 3p54p 1S0 for an error of 3% in the excitation
energy whereas the largest negative difference is −543 cm−1 for 3p53d 3Po

0. For Breit–
Pauli, these differences are 206.9 cm−1 and −525 cm−1, respectively. This suggests that the
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Table 3. Compared relativistic line strengths in the Breit–Pauli and MCDHF core-polarization
models. Per cent differences were computed according to the formula [S(l) − S(v)] ×
100/ max{S(l), S(v)}.

S(l) S(v) Difference (%) S(l) S(v) Difference (%)

3p6 1S0 − 3p54s 1Po
1 3p54s 3Po

2 − 3p54p 3D3

MCDHF 0.79 0.53 32 61.78 62.16 −1
Breit–Pauli 0.80 0.52 35 61.75 63.42 −3

3p6 1S0 − 3p53d1Po
1 3p54p 3P2 − 3p53d 3Do

2

MCDHF 0.34 0.20 41 22.84 21.61 5
Breit–Pauli 0.35 0.21 40 22.42 22.47 0

core-polarization model is only appropriate for computing transition probabilities between
excited states. At the same time, it indicates that the core-polarization model is a reasonable
one for computing the term composition of levels in Ar I, which is presented in the last column
of table 2.

The p5l spectrum is an interesting one. At the Hartree-Fock level, the 1P and 3P terms of
p5p′ are degenerate and, similarly, the 1Do and 3Do terms of p5d are degenerate. In Ar I, all
other terms are separated by about 400 cm−1 or more. Because the core-polarization effect
is small, the non-relativistic LS term energies remain nearly degenerate when correlation is
added and the relativistic corrections induce strong mixing of terms in certain levels.

Table 2 confirms the strong mixing of terms in 1P1 and 3P1 levels, on the one hand, and
1Do

2 and 3Do
2 levels, on the other hand. Two interesting examples are the 3p54p 1D2 and 1P1

levels, where the leading terms are 3P2 and 3D1, respectively. To correctly label the 3p54p 1D2

level, it was necessary to note that all the lower eigenvalues in 3p54p with J = 2 had strong
dominant compositions and could be labelled appropriately with certainty, leaving the third
eigenvalue to be identified as 1D2 by default. Similarly, the leading terms in the first three
levels of 3p54p with J = 1 were found to be 3P1,

3D1 and 3P1, which pointed to the fact
that the fourth level was 1P1, by elimination. (Note that the levels in table 2 are not ordered
by energy.) In their study of the electron-impact ionization process in Ar I, Dasgupta et al
[1] employed a method similar to the Hartree–Fock–Slater procedure but they used observed
energies and adjusted some parameters for obtaining 4s and 4p orbitals. A CI calculation was
then performed that included the spin–orbit interaction. Their mixing coefficients for states
are in good agreement with ours for the 3p54s levels and for 3p54p their labels for energy
levels agree with ours.

To ensure the consistency of this analysis, our term mixing results were also reproduced
from the MCDHF wavefunction by a transformation from jj to LSJ coupling that confirmed
our labelling. The 3p53d 1Po

1 and 3Po
1 levels show a very weak mixing of terms while the

1Fo
3,

3Fo
3 and the 3Do

3 levels exhibit a strong mixing of the corresponding terms. However,
in each case the assigned label reflects the dominant composition. In the case of the 3p55s
configuration, the composition of the two 1Po

1 and 3Po
1 levels is highly mixed, much more so

than for the levels of the corresponding 3p54s configuration. Since the spin–orbit interaction
comes from the same 3p5 subshell, the smaller mixing for the levels of 3p54s can be attributed
to the larger separation of the non-relativistic terms due to a the larger exchange and larger
core-polarization effect. Thus with only two exceptions, the labels in LSJ correspond to the
dominant LS component of the wavefunction.

In table 3 we compare the length and velocity forms of the line strength in the core-
polarization models, Breit–Pauli and MCDHF, for several transitions. As in table 1, we notice
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Table 4. Optimization strategies for groups of term. Eigenfunctions are designated by the dominant
configuration for each term.

Even Odd

Group Configuration Term (s) Group Configuration Term (s)

1 3p6 1S 1 3p54s 1Po, 3Po

2 3p54p 1P, 3P, 1D, 3D 2 3p53d 1Do, 3Do, 1Fo, 3Fo,

3 3p54p 3S 1Po(0.3), 3Po(0.3)

4 3p6 1S(0.3) 3p54s 1Po(0.3), 3Po(0.3)

3p54p 1S 3p55s 1Po(0.3), 3Po(0.3)

3 3p53d 1Po, 3Po, 1Do(0.3),

3Do(0.3)

3p54s 1Po(0.3), 3Po(0.3)

3p55s 1Po, 3Po

that the two forms of the line strengths are in better agreement for transitions between excited
states than for transitions from the ground state. Moreover, the length and velocity forms of the
MCDHF and Breit–Pauli line strengths for the 3p54s → 3p54p and 3p54s → 3p53d transitions
are in quite good agreement with each other, while they differ for transitions from the ground
state. These results suggest that a more appropriate computational model is necessary for
spectrum calculations that included the ground state.

4. Extended correlation model

Using the experience gained from the Breit–Pauli core-polarization calculation, a second
calculation was performed that included more extended correlation. Expansions were
generated using single (S) and double (D) excitations from a multi-reference set of
configuration states. The 1s22s22p6 subshells were treated as an inactive core while the
remaining six electrons in outer shells were considered to be active (valence electrons).
Wavefunction expansions were obtained from orbital sets of increasing size where 3 � n � 7,
so that convergence could be monitored. Those configurations from SD excitation expansions
which did not interact with at least one member of the multi-reference set were discarded.

In this model, the expansions are considerably larger and it was now necessary to optimize
the orbitals for smaller sets of LS terms. Because the Breit–Pauli interaction matrix needs
to be computed from one orthonormal orbital basis, LS terms were grouped according to the
term interaction shown in table 2: whenever there was an interaction between two terms, the
two terms needed to be in the same group. Simultaneous optimization of the radial functions
was performed on all LS states that were grouped together. This grouping is described in
table 4. For each group, the listed configurations and terms defined the multi-reference set
for the different terms. The desired LS states are those for which the default weight is unity
(unspecified). Thus in the fourth even group, for example, the 1S expansion was obtained from
SD excitations from 3p6 and 3p54p and during the optimization process, the first 1S eigenstate
was weighted by a somewhat arbitrary, small factor of 0.3 whereas the second had a weight
of unity. Thus the first eigenstate is not totally ignored, even though the second eigenstate is
the desired result from this calculation. For the second odd group, there were multiple terms
for which wavefunctions were to be determined, some of which were for higher eigenstates.
Consequently the multi-reference set for 1Po, for example, included the three configurations
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Table 5. Comparison of relativistic line strengths in the extended correlation model. Per cent
differences were computed according to the formula [S(l) − S(v)] × 100/S(l).

S(l) S(v) Difference (%) S(l) S(v) Difference (%)

3p6 1S0 − 3p54s1Po
1 3p54s 3Po

2 − 3p54p 3D3

Ab initio 0.913 0.911 0 66.66 66.62 0
Adjusted 0.919 0.909 1 66.56 66.21 1

3p6 1S0 − 3p53d1Po
1 3p54p 3P2 − 3p53d 3Do

2

Ab initio 0.381 0.357 6 11.90 11.65 2
Adjusted 0.427 0.397 7 15.08 14.46 4

3p53d, 3p54s and 3p55s. Generally, all the terms of a configuration are designated as a group,
but in the present case, this resulted in expansions that were too long and weak interactions
suggested that some could be dealt with separately. In addition, a strong Coulomb interaction,
as in 3p53d and 3p55s 1Po

1 and 3Po
1, required that the two eigenstates be in the same group.

Once radial functions had been determined for each group, the Breit–Pauli CI calculations
were performed and transition data determined from these wavefunctions. All E1 transitions
between odd and even levels were computed as well as E2 and M1 transitions between the
3p54p group of levels, though their effect on lifetimes is negligible. Energy levels relative
to the ground state were now generally too low by between 400 and 500 cm−1 with several
considerably lower and a few higher. In order to improve the reliability of the mixing of LS
terms in the Breit–Pauli interaction matrix, adjustments were made to the matrix elements
that shifted all diagonal components of a given LS block by a fixed amount. This shift was
the difference of an ab initio energy level and the observed level for either the highest or
lowest J value in the case of triplets. In this process, the terms in an optimization group (see
table 4) were adjusted together. If more than one eigenstate in a group had the same LS value
as, for example, 3p53d 1Po and 3p55s 1Po in the odd group 3, energy adjustments were made
separately for each of the eigenstates with different shifts for 1Po. Because of the strong
interactions between terms, adjustments often needed to be repeated. The extreme J was
selected because this component does not interact with the corresponding singlet term and our
experience showed that adjustments converged faster in this scheme compared with making
adjustments to the same J for both triplet and singlet levels of an LS term.

In table 5, we report both ab initio and adjusted line strengths in the Breit–Pauli
extended correlation model. Compared with core-polarization line strengths for ground state
transitions, the extended correlation model results are in much better agreement both for ab
initio and adjusted data. For example, the length and velocity forms of the line strength
for 3p6 1S0 → 3p54s1Po

1 differ by less than 1%, while in the core-polarization model this
disagreement was 34%, for n = 8, as shown in table 1. The length form of the line strength is
independent of energy and it is interesting to note that extended correlation has reduced this
value by 5%.

The results of our adjusted extended correlation calculations are presented in table 6.
Included are energies relative to the ground state, computed − observed [26] energy
differences, the splitting within multiplets relative to the energy of the lowest and the lifetimes
of the levels. In comparison with the core-polarization model, energies in the correlation model
are in much better agreement with observed energies, even before the adjustment. In the case
of multiplets, the smallest difference indicates the level used in the adjustment process. For
example, in 3p54p 3P the multiplet was shifted for agreement with observed for J = 0. The
difference with observed for 3P2 and 3P1 of 96 cm−1 and −11 cm−1, respectively, is a reflection
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Table 6. Breit–Pauli extended correlation model energies, energy differences (computed −
observed) in cm−1, splittings and lifetimes in s for excited states up to and including 3p53d 1Po

1
after adjustment.

Configuration Term Level Difference Splitting Lifetime

3p6 1S0 0.00 0.00

3p54s 3Po
2 93163.5 19.71

3Po
1 93756.1 5.50 592.62 9.6479 × 10−9

3Po
0 94469.0 −84.71 1305.49

1Po
1 95394.3 −5.51 1.8564 × 10−9

3p54p 3P1 104108.1 5.97 3.8989 × 10−8

3D3 105468.7 5.97 2.7861 × 10−8

3D2 105701.2 83.87 232.42 2.8986 × 10−8

3D1 106126.3 39.04 657.57 2.7753 × 10−8

3P2 106333.4 95.86 2.6448 × 10−8

3P0 107054.2 −0.02 720.84 2.3120 × 10−8

3P1 107486.1 −10.33 1152.68 2.6208 × 10−8

1P1 107120.9 −10.83 2.7302 × 10−8

1D2 107294.1 4.41 2.7602 × 10−8

1S0 108727.3 4.69 2.1645 × 10−8

3p53d 3Po
0 111667.7 −0.09 7.9795 × 10−8

3Po
1 111808.1 −9.98 140.37 6.8002 × 10−8

3Po
2 112102.3 −36.63 434.61 8.7573 × 10−8

3Fo
4 112769.5 19.34 5.8425 × 10−8

3Fo
3 113020.8 0.48 251.35 5.6936 × 10−8

3Fo
2 113420.1 −5.87 650.60 5.5190 × 10−8

3p55s 3Po
2 113549.5 81.04 3.2025 × 10−8

3Po
0 114848.3 −13.38 1298.75 3.3040 × 10−8

3Po
1 114912.5 −62.53 1362.98 1.5199 × 10−8

1Po
1 113648.3 5.03 8.3089 × 10−9

3p53d 1Fo
3 113721.4 4.86 5.2151 × 10−8

3Do
1 114189.8 42.06 3.0558 × 10−9

3Do
3 114759.1 −62.86 569.29 5.1537 × 10−8

3Do
2 114834.5 29.40 644.75 4.9616 × 10−8

1Do
2 114608.3 −32.71 5.2464 × 10−8

1Po
1 115364.9 −1.94 2.1639 × 10−9

of the fact that our calculations have not accurately captured the fine-structure splitting. In
some instances, such as 3p55s 3Po, close agreement could not be obtained. Similarly, the
energy adjustment for the level 3p53d1Po

1 was not successful. As was already noted in other
studies [27], we make the remark that the calculation of atomic data involving this term can
be particularly difficult.

Our scheme for monitoring the accuracy of transition probabilities has already been
described [23, 28, 29]. This mechanism relies on comparison of the length and velocity
gauges of LS allowed transitions, as well as on transition energy accuracies. A few selected
transition probabilities are displayed in table 7; other transition data can be obtained from a
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Table 7. Selected Ar I transition probabilities (in s−1) in the Breit–Pauli extended correlation
modela.

Ab initio Adjusted

Transition Aki(l) Aki (v) Aki (l) Aki (v)

3p6 1S0 − 3p54s 1Po
1 5.2783 × 108 5.2677 × 108 5.3866 × 108 5.3272 × 108

− 3p54s 3Po
1 1.0568 × 108 1.0863 × 108 1.0365 × 108 1.0561 × 108

− 3p55s 1Po
1 8.9173 × 107 8.9581 × 107 9.5170 × 107 9.4717 × 107

− 3p53d 3Do
1 3.3813 × 108 3.2484 × 108 3.0753 × 108 2.9345 × 108

3p54s 3Po
0 − 3p54p 3S1 1.0847 × 106 1.3513 × 106 1.1046 × 106 1.4639 × 106

3p54s 3Po
1 − 3p54p 3S1 5.8259 × 106 6.6709 × 106 5.4985 × 106 6.6200 × 106

3p54s 3Po
2 − 3p54p 3S1 2.0495 × 107 2.2079 × 107 1.8870 × 107 2.1210 × 107

3p54s 1Po
1 − 3p54p 1S0 5.0255 × 107 5.5509 × 107 4.6084 × 107 5.3843 × 107

3p54p 3So
1 − 3p53d 3P0 1.1552 × 107 1.0483 × 107 1.0884 × 107 1.0197 × 107

3p54p 3So
1 − 3p53d 3P1 1.0071 × 107 9.1232 × 106 9.6526 × 106 8.9740 × 106

3p54p 3So
1 − 3p53d 3P2 6.1129 × 106 5.6060 × 106 5.9541 × 106 5.5303 × 106

3p54p 3So
1 − 3p55s 1P1 3.8981 × 106 2.8098 × 106 4.0750 × 106 2.6877 × 106

3p54p 3Do
1 − 3p55s 1P1 5.1195 × 106 5.3857 × 106 4.6652 × 106 4.8027 × 106

3p54p 3Do
2 − 3p55s 1P1 1.1803 × 107 1.1878 × 107 1.0174 × 107 9.9939 × 106

3p54p 3Po
2 − 3p53d 1F3 1.5336 × 107 1.4800 × 107 1.4682 × 107 1.5079 × 107

3p54p 1Po
1 − 3p53d 3F1 7.8898 × 104 9.4038 × 104 7.8338 × 104 1.0240 × 105

3p54p 1Po
1 − 3p53d 1D2 1.7066 × 107 1.6389 × 107 1.5394 × 107 1.5567 × 107

3p54p 1Do
2 − 3p55s 3P1 1.1912 × 107 1.2493 × 107 1.2480 × 107 1.2968 × 107

3p54p 1Do
2 − 3p55s 3P2 1.3368 × 105 2.1806 × 105 1.5848 × 105 2.4406 × 105

3p54p 1Do
2 − 3p53d 1D2 2.2685 × 106 2.1910 × 106 2.1180 × 106 2.1947 × 106

a The velocity form of the transition operator has neglected some relativistic corrections and hence,
unlike the length form, is not correct in that some terms of order α2 have been omitted. The values
of the length and velocity gauges have significance when term mixing is small and the transition is
spin-allowed.

web database [30]. The adjusted values have been computed with more accurate transition
energies, but on the whole it is not clear that length and velocity values are in better agreement.

Table 5 has already shown that this extended correlation model improved the agreement
in the length and velocity form of the line strength of some transitions from the ground
state. In table 8 we compare the length and velocity weighted oscillator strengths for some
transitions between excited states for all our computational models. Let us first compare
the two core-polarization results. The models for these two calculations were the same, but
the optimization procedures were different in that only new orbitals could be optimized in
MCDHF as the expansion increased. Though table 2 showed better excitation energies for
MCDHF than the present Breit–Pauli, the length and velocity gauges of the latter are generally
better for these transitions. In the extended correlation model, the difference between the ab
initio and energy adjusted results is an indication of uncertainty. In several instances, the
adjusted values have better agreement between length and velocity forms suggesting they are
the more reliable. The last transition, 3p54p 1S0 → 3p55s 1Po

1, cannot be considered reliable,
though there is agreement between the MCDHF core-polarization values and the Breit–Pauli
extended correlation ones. The effect of adding core–core correlation to core-polarization is
often between 5 and 10% but it has increased the oscillator strength by 26% for the 3p54p 3S1 →
3p53d 3Po

2 transition.
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Table 8. Selected weighted relativistic oscillator strengths (gf values) for transitions between
excited states from our different theoretical models.

Core-polarization BP extended correlation

Gauge MCDHF BP Ab initio Adjusted

3p54s 3P2 − 3p54p 3Do
3

gf (l) 2.36 2.35 2.49 2.48
gf (v) 2.37 2.41 2.48 2.47

3p54p 3P1 − 3p53d 3Po
2

gf (l) 0.545 0.519 0.703 0.698
gf (v) 0.452 0.515 0.645 0.649

3p54p 3D3 − 3p53d 3Fo
3

gf (l) 0.422 0.398 0.482 0.486
gf (v) 0.373 0.395 0.458 0.485

3p54p 1D2 − 3p53d 1Do
2

gf (l) 0.274 0.265 0.298 0.297
gf (v) 0.254 0.264 0.288 0.308

3p54p 1S0 − 3p55s 1Po
1

gf (l) 0.041 0.064 0.040 0.040
gf (v) 0.117 0.060 0.144 0.112

5. Comparison with experiment and other theory

The resonance transitions, 3s33p6 1S0 → 3p54s 1,3Po
1 have a long history going back as far as

1958. (An extensive list of references to experimental and theoretical data can be found in
[11] and [19].) In table 9, we analyse recent theoretical values and experimental data for these
transitions more closely. In addition to f-values, we also look at the ratio of the f-values for
the allowed and spin-forbidden transitions. It appears that experiment can determine this ratio
more accurately than the f-values themselves. For the upper levels, we also compare with
observed gJ factors which depend largely on the term composition of a level.

For theory, there are a number of accuracy indicators. In addition to the excitation energy,
there is the energy separation between the 1Po

1 and 3Po
1 levels which was 1617 cm−1 in our

ab initio Breit–Pauli calculation and adjusted to 1638 cm−1. Another is the spread of the 3Po

multiplet which was 1305.40 cm−1 (not affected by adjusting) compared to 1413.91 cm−1

for the observed. This suggests that the relativistic effect was not large enough, and that the
mixing of the 1Po

1 and 3Po
1 terms was too small. This is confirmed by the gJ factor that is too

large for 3P1 and too small for 1P1.
We therefore also undertook an extended correlation MCDHF calculation for these

transitions. Expansions were obtained through SD excitations 3s23p6 and 3s23p54s for odd
and even states, respectively, for n = 3, 4, 5. For the odd levels, calculation (a) proceeded with
the same scheme also for n = 6, but (b) added only core-polarization CSFs that emphasize
the outer region of the wavefunction important in transition probabilities. The results are
reported in table 9 and compared with experiment, first for energies and then for f-values. The
Breit–Pauli (BP) energy is for the ab initio energy. Comparing with MCDHF, the relativistic
configuration interaction (RCI) performed by Avgoustoglou and Beck [19], and the most
recent configuration interaction and relativistic many-body perturbation theory (CI+RMBPT)
by Savukov [20], the MCDHF (b) energies are the best with the present Breit–Pauli (BP) a
close second but the computed gJ for the latter are not in good agreement with observed.
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Table 9. A detailed comparison of 3p6 1S0 → 3p54s 1,3Po
1 with recent theory and experiment.

Energies gJ

Method 3Po
1

1Po
1 Difference 3Po

1
1Po

1

Obs. [26] 93751 95400 1649 1.404 1.102
BP (present) 93346 94963 1617 1.416 1.085
MCDHF (a) 92811 94407 1596 1.400 1.101
MCDHF (b) 93438 95089 1606 1.402 1.098
RCI [19] 94526 96238 1712
CI+RMBPT [20] 92595 95307 1712

f-values

Source 3Po
1

1Po
1 Ratio

Experiment
Federman et al [9] 0.064 0.257 4.01
Chan et al [32] 0.0662(33) 0.265(13) 4.00
Ligtenberg et al [11] 0.0616(21) 0.2297(93) 3.73
Wu et al [10] 0.0676(40) 0.2590(150) 3.83
Gibson and Risley [12] 0.0580(17) 0.2214(68) 3.82

Theory
BP (fine tuned) 0.0619 0.2662 4.30
MCDHF (a) 0.0570 0.221 3.87
MCDHF (b) 0.0562 0.226 4.02
RCI [19] 0.0672 0.248 3.69
CI+RMBPT [20] 0.0629 0.254 4.03

In the study of f-values, Federman et al [9] measured the f-value for the allowed transition
but used semi-empirical methods for estimating the value for the intercombination line and
noted that the ratio of allowed to forbidden was about 4.0. Since then, there have been several
accurate experimental measurements, and though the absolute values for their f-values differ,
the ratios are considerably more constant, generally in the range of 3.8–4.0.

In our Breit–Pauli calculations the spread of the 3Po term is too small, in that the separation
between 3Po

2 and 3Po
0 is too small, suggesting that the relativistic correction is too small. If

the Breit Pauli f-values are also corrected for the spread of the levels (as suggested by
Hibbert in a process referred to as ‘fine-tuning’ [31]) we get the values in the table, with a
ratio of 4.3. The MCDHF and CI+RMBPT theoretical ratios are in good agreement with the
experimentally determined ones, but the MCDHF f-values from calculations (a) are the closest
to the experimental values of Gibson and Risley that have the smallest error bars. The ratio for
the RCI value is too low. The considerable difference in the present Breit–Pauli and MCDHF
f-values for the allowed transition suggests relativistic effects were not captured accurately by
the Breit–Pauli approximation.

A few recent papers have included some transitions to 3p53d 3Po
1,

3Do
1 and 1Po

1 and
3p55s 3Po

1 or 1Po
1. In table 10, we compare our oscillator strengths for these transitions

with experiment and with some theory from the 1970s. The present theory on the whole is
more accurate than the quantum defect theory of 1974 [17]. What is interesting is that in going
from 4s to 5s the ratio of the oscillator strength of 1Po

1 to 3Po
1 changes from about 4.0 to 2.0

for the experimental values due to the larger mixing in the two 5s levels.
Using a laser gas-discharge, Savukov and Berry [13] measured the ratio of line strengths

of two transitions from the 3p54s 1Po
1 excited state. The transitions with wavelengths of 9787 Å

and 9227 Å were to 3p53d 3Do
2 and 3Po

2 levels, respectively. For transitions between excited
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Table 10. Comparison of f-values for some transitions from the ground state to 3p53d and 3p55s
levels.

f-values

Source 3d 3Po
1 5s 1Po

1 3d 3Do
1 5s 3Po

1 3d 1Po
1

Experiment
Wu et al [10] 0.0010(3) 0.0241(29) 0.0929(78) 0.0122(32) 0.106(10)
Chan et al [32] 0.0013(1) 0.0264(26) 0.0914(91) 0.0126(13) 0.109(11)

Theory
BP ab initio 0.0011 0.0314 0.1175 0.0191 0.1330
BP adjusted 0.0009 0.0331 0.1061 0.0135 0.1496
Lin et al [18] 0.0037 0.049 0.167
Lee [17] 0.0016 0.045 0.045 0.039 0.128

Table 11. Comparison of line strengths for some transitions from the 3p54s 1Po
1 to 3p54p 3D2 and

3P2 levels.

Line strength

Method 3p54p 3Do
2 3p54p 3Po

2 Ratio

Core-polarization
BP 3.30 12.42 3.76
MCDHF 3.32 10.80 3.25

Extended correlation
BP ab initio 4.387 11.68 2.66
BP adjusted 1.617 10.82 6.69

states, the core-polarization results are applicable, and in table 11 we compare our four ratios.
The experimental value for the ratio was 3.29(13), a value that had been confirmed by a
theoretical value of 3.23 [13]. In the core-polarization model, the MCDHF ratio with the
value of 3.25 is in excellent agreement with experiment, whereas in the extended correlation
model, the ab initio ratio is too small and the adjusted ratio much too large. The adjustment
has brought the line strength for the transition from 3p54p 3P2 into excellent agreement with
the MCDHF value, but the line strength for 3D2 was reduced by more than a factor of 2.
As table 2 showed, the composition of the 3p54p 3D2 and 3P2 levels is highly mixed, also
involving a 1D2 component. Small adjustments to the energy result in considerable changes
in composition and transition probabilities, some being more sensitive to change than others.
The most reliable calculation in this case appears to be the MCDHF core-polarization method.

6. Conclusions

Breit–Pauli and multiconfiguration Dirac–Hartree–Fock energy levels and E1 and some E2
and M1 transition probabilities were computed for neutral argon. The core-polarization model
was useful for determining the mixing of terms in Ar I. As a result of this process, terms were
grouped together based on their term mixing. A Breit–Pauli correlation model including SD
excitations was then applied, which yielded energy levels from the ground state in significantly
better agreement with experiment. In the case of the resonance transition, the MCDHF results
were in better agreement with experiment than the Breit–Pauli results, in spite of the fact
that argon is a relatively light, neutral atom. Breit–Pauli results were best for J-values where
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term mixing was relatively small. For wavefunctions with a highly mixed composition, the
diagonal energy adjustment could produce large changes in transition probabilities and was
deemed not reliable.
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